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Keynote Speakers 

 

Des Higgins, PhD - Making and using extremely large multiple sequence alignments. 

Short Bio: Des Higgins is professor of Bioinformatics in University College Dublin, Ireland and has been 
working on sequence alignment and molecular evolution since the mid 1980s. He originated the widely 
used Clustal package and continues to develop and maintain multiple sequence alignment algorithms 
and software. He also works on the analysis of high throughput genomics data, especially in the 
application of multivariate analysis methods for data integration. He has published more than 130 peer-
reviewed articles in bioinformatics, sequence alignment and genomics with an h-index of 54. 

 

Christopher E. Mason, PhD - Leveraging short and long reads for optimal RNA-Sequencing with 

CAMDA data set #1. 

Short Bio: Dr. Mason founded his laboratory as an assistant professor at Weill Cornell Medical College in 

the Department of Physiology and Biophysics and at the Institute for Computational Biomedicine. 

Professor Mason also holds an appointment in the Tri-Institutional Program on Computational Biology 

and Medicine between Cornell, Memorial Sloan-Kettering Cancer Center and Rockefeller University and 

he also has an appointment at the Weill Cornell Cancer Center and the Brain and Mind Research 

Institute. In 2013, he won the Hirschl-Weill-Caulier Career Scientist Award. In 2014, he won the Vallee 

Foundation Young Investigator Award, the CDC Honor Award for Standardization of Clinical Testing, and 

he was just named as one of the “Brilliant Ten” Scientists in the world by Popular Science magazine.  
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Prognostic value of cross-omics screening for cancer survival  
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Switzerland 
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Introduction 

Large-scale molecular profiling of cancers offers a great potential to advance our understanding of 
the development and progression of this disease. Systematic cancer genomics projects, like The 
Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), have applied 
high-throughput genome analysis techniques to generate genomics, transcriptomics, epigenomics and 
clinical data for several cancers. These data can be informative for multiple aspects ranging from 
discovering of new markers for more accurate cancer diagnosis and prognosis, to development of 
new therapeutics and personalized treatments.   

The overall goal of our study, as a response to one of the CAMDA 2015 Challenges, is to gain novel 
biological insights into three less well studied cancers: Lung Adenocarcinoma (LUAD), Kidney 
Renal Clear Cell Carcinoma (KIRC) and Head and Neck Squamous Cell Carcinoma (HNSC). We 
performed a systematic analysis of genome-wide molecular datasets provided from the ICGC Data 
Portal (miRNA, mRNA and protein expression, somatic copy-number variation (CNV) and DNA 
methylation profiles) to investigate underlying mechanisms of cancer initiation and progression. 
Cancer is an extremely complex disease and it is of no surprise that previous genomics analyses have 
revealed extensive tumor heterogeneity1. As consequence, the identification of molecular signatures 
from genomics analyses that can give accurate prediction and prognosis of response to therapy is still 
a major challenge. In the last few years, extensive efforts have been made to incorporate diverse 
molecular information for better prognosis and treatment plans2,3. However, due to the high cost of 
large-scale molecular profiling, in practice clinicians are mainly focusing on a small number of 
selected genes or are using only single-platform genomic data. Therefore, with our study we want to 
understand how and to what extent different molecular profiling data can be useful in cancer 
diagnosis and prognosis. Using miRNA and mRNA expression, somatic copy-number variation, 
DNA methylation and somatic mutation profiles we have identified genes that are frequently altered 
in each of the selected cancers and are linked to patient survival. Some of the biological markers that 
we identified have already been reported in previous studies, but few of them are yet to be examined. 
In addition, we assessed which of the molecular dataset, as a standalone platform is the most 
informative for patient diagnostic and survival prediction.  
 

Results 

Molecular signatures for discrimination between normal and cancer tissues 

First, we were interested in finding molecular signatures that can discriminate neoplastic from normal 
tissue in the selected cancer cohorts. For this purpose, we used a classification approach based on 
LASSO regression model4. In this analysis. only molecular data from normal tissue that is adjacent to 
primary tumor was used; the molecular data from blood derived normal tissue was not considered in 
order to avoid building models based on genes that can discriminate between blood and the 
corresponding solid tissue (lung, kidney or head/neck). The classification performance of the selected 
models was measured using the AUC (“Area Under Curve”) statistic, which can be interpreted as a 
probability that the classifier will assign a higher score to a randomly chosen positive example than 
to a randomly chosen negative example5. The AUCs values of the selected models for discrimination 
between normal and cancer populations range from 0.95 – 1.00 (see Table 1). Almost perfect 
performance can be reached easily, which suggest that there are radical molecular changes in 



cancerous cells compared to normal cells. Interestingly, the best (and perfect) classifier performance 
was achieved based on DNA methylation data for the LUAD and KIRC cohorts (Table 1). It is a 
well-known fact that DNA methylation can alter the expression of genes and several recent studies 
have shown that it also plays a crucial role in the development of nearly all types of cancer6,7. In the 
HNSC cohort, miRNA and mRNA expression data had equal performance with DNA methylation 
data in discriminating between normal and cancer tissue. With CNV data, we observed the worst 
performance in each cancer cohort. 

Building a model that can discriminate whether a sample comes from a tumor that will go into 
remission or from one that will progress until the donor’s death has proven to be a much more 
difficult task. For this task the above approach based on LASSO regression gave poor prognostic 
results (AUC values in range 0.5 – 0.76).  

Cancer Type Analyzed Data AUC Number of Selected 
Features 

Lung Adenocarcinoma 

miRNA expression 0.98 16 
mRNA expression 0.99 24 

CNV 0.95 64 
DNA Methylation 1.00 30 

Kidney Renal Clear Cell Carcinoma 

miRNA expression 0.97 12 
mRNA expression 0.98 36 

CNV 0.98 76 
DNA Methylation 1 120 

Head and Neck Squamous Cell 
Carcinoma 

miRNA expression 0.99 29 
mRNA expression 0.99 33 

CNV 0.93 66 
DNA Methylation 0.99 23 

Table 1. Classification performance of the supervised learning models for discrimination between normal and cancer 
tissues 
 
 
Molecular biomarkers associated with overall patient survival  

To identify molecular signatures linked to patient survival for each cancer cohort, we asked whether 
low or high levels of a particular measured entity (expression, CNV or methylation) are significantly 
correlated with patients overall survival. In particular, in each cancer cohort, for a given miRNA, 
mRNA, protein, CNV and methylation probe, we separated the patients into quartiles based on the 
measured levels of the particular entity (miRNA/mRNA/protein expression, CNV or methylation 
values respectively). Then, using a log-rank statistical test we compared the overall survival of the 
patient group characterized by low levels of the particular measured entity (ie. values below the first 
quartile) to the survival of the patient group with high levels of that particular measured entity 
(values above the third quartile) (see Figure 1). The patients were split into training and validation 
sets and all statistical tests were conveyed on the training datasets. Based on this “quartile” approach, 
we could identify miRNAs, protein-coding genes, CNV and methylation probes whose extreme 
measured values were statistically linked to overall patients survival (p-value of log-rank test < 0.05). 
For further analyses, we kept only those that were significantly associated to the overall survival also 
in the validation dataset. Next, in each molecular dataset we clustered the selected genes/probes from 
the “quartile” test using non-negative matrix factorization8 and selected best representatives from 
each cluster. To build prognosis models for each molecular dataset and each cancer cohort, we 
performed a multivariate Cox regression9 on the selected genes/probes. For each signature, 
coefficients from a multivariate Cox regression analysis on the training cohort were used to compute 
a risk on the validation cohort. The accuracy of the prognosis methods was assessed through a 
concordance index, which is a non-parametric measure that quantifies the fraction of pairs of patients 
whose predicted survival times are correctly ordered among all pairs that can actually be ordered10. 
The best performing models for each cancer cohort are shown in Table 2. Using only 3 or 4 
genes/probes from each molecular dataset, we could achieve concordance correlation coefficient 
greater than 0.7 in the validation cohorts (see the red bars on Figure 2). 
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Figure 1. Quartile-based selection of features associated to overall survival. A) Differences in the survival probability 
between patients with high expression values of “hsa-mir-181c” (>Q3) and patients with low expression values (<Q1). B) 
Differences in the survival probability between patients with high methylation values (>Q3) of the “cg21954994” 
methylation probe and patients with low methylation values (<Q1). 

Cancer Type Analyzed Data 
Survival 

Concordance 
Index 

Molecular Signatures for Survival Prognosis 

Lung 
Adenocarcinoma 

miRNA expression 0.70 hsa-mir-23b; hsa-mir-181c; hsa-mir-1976 
mRNA expression 0.71 ATP8A2; FOXM1; LCN10 

CNV 0.57 HP1BP3; MLLT3; GDPD3; RP11-778D9.13 
Methylation 0.73 cg06602857; cg21954994; cg19213569 

Kidney Renal 
Clear Cell 
Carcinoma 

miRNA expression 0.72 hsa-mir-21; hsa-mir-183; hsa-mir-3942; hsa-let-7b 
mRNA expression 0.69 BARX1; ITPKA; NKX2-5 

CNV 0.65 IFNA5; CDKN2A; RP11-399D6.2 
Methylation 0.77 cg09635053; cg14898260; cg23368159 

Head and Neck 
Squamous Cell 

Carcinoma 

miRNA expression 0.68 hsa-mir-520g; hsa-mir-29b-1; hsa-mir-144; hsa-mir-137 
mRNA expression 0.64 AQP5; CAMKV; SNAP25 

CNV 0.52 RP11-419C19.2; HOXD3; BRIX1 
Methylation 0.67 cg14526044; cg15716405; cg17720011; cg12042587 

 
Table 2. Molecular signatures for cancer survival prognosis and their performance on the validation datasets for each 
cancer cohort. 

Next, we wanted to test whether the molecular profiles that are distinctive for normal and cancer 
tissues are also correlated with patient survival. Using the selected genes/probes from the normal vs 
cancer tissue classification, we built multivariate Cox regression prognostic models and assessed 
their prediction performance through a concordance index (green bars on Figure 2). Our results show 
that even though one can well discriminate between normal and cancer tissues using selected 
features, the same features are not necessarily good survival predictors. In fact, only very few genes 
selected from the normal vs cancer classification appear to be predictive for survival. For example, 
the miRNA “hsa-mir-21”, an "oncomir” associated with a wide variety of cancers11, is predictive for 
survival in KIRC cohort, but it is also selected as a discriminatory feature in the normal vs cancer 
tissue prediction in the KIRC and LUAD cohorts.  

To further assess the power of our selected molecular signatures, we built multivariate Cox 
regression prognostic models using randomly selected genes/probes. Figure 2 shows that our 
prognostic markers selected from the different molecular datasets (miRNA, mRNA, CNV, 
methylation) are largely superior to randomly chosen genes/probes in the three cancer cohorts.  

We extended the analyses to include survival prediction based on somatic mutations profiles (SNP 
data), which we obtained from the TCGA Data Portal. For each gene we split the patients into two 
groups: patients having a somatic mutation in that particular gene, and patients with no somatic 



mutations in that gene. If the difference in survival between the two patient groups is significant 
(p<0.01), we included the corresponding gene in the multivariate Cox model. Again we split the set 
of patients on training and validation sets. The Cox model built on the training set was used to predict 
the survival on the validation dataset. For each particular gene, we required that at least 10 patients 
have a mutation in that gene. The survival prognosis signatures from SNPs data were superior over 
the signatures from the other datasets in LUAD and HNSC cohorts. Only in the KIRC cohort the 
signature from the methylation data gave the best performance. Next, we integrated the prediction 
signatures from the different “-omics” data together with clinical variables (donor age, sex and donor 
icd10 diagnosis) to build a “multi-omics” Cox survival prediction model.  The addition of variables 
into the model was assessed through a forward model selection procedure (Aikake information 
criterion) combined with a Cox regression. However, the prognostic performance of this “multi-
omics” prediction model has not improved.   

Figure 2. Performance assessment of several prognosis signatures on the validation datasets in A) Lung Adenocarcinoma, 
B) Kidney Renal Clear Cell Carcinoma and C) Head and Neck Squamous Cell Carcinoma. Red: Survival prognostic 
using molecular signatures listed in Table 2. Green: Survival prognostic using molecular signatures from normal-cancer 
classification. Orange: Survival prognostic using randomly chosen molecular data.  

Discussion 

In this work we evaluated patient survival prediction from different molecular data types and 
described potential prognostic signatures across three cancer types. Currently, only a few gene 
expression signatures are routinely used in the clinical practice for these three cancers12. In LUAD 
and HNSC cancer cohorts, somatic mutation profiles (SNP data) appear to be the most informative 
resources for prognostics, while DNA methylation profiles are the most informative in the KIRC 
cohort. Using a quartile-based selection we identified features that are prognostic for at least a subset 
of patients. This approach inherently supports heterogeneity, in contrast to classification methods. 
Some of the prognostic signatures that we identified are well studied in the literature: eg. the FOXM1 
gene has been shown to promote tumor metastasis in non-small cell lung cancer patients and is 
associated with chemotherapy resistance13,14. But we also identified prognostic signatures that have 
not been reported as linked to cancer progression. For example, the gene ATP8A2, member of 
aminophospholipid transporter family, is associated with several diseases, but not with cancer. 
However, another gene from the same family, ATP11A, was recently identified as a predictive 
marker for metastasis in colorectal cancer15.  

The fact that we can relatively easily discriminate normal from tumor tissue suggests that cancer 
consistently alters the molecular machinery.  However, cancer malignancy is heterogeneously 



defined within cancer type, and as a consequence molecular signatures do not perfectly predict 
survival. Different molecular data types have different predictive values in cancer types, which 
suggests that cancer malignancy relies on different mechanisms across cancers. Our analyses do not 
necessarily identify the cancer causal changes; they rather identify molecular markers that are 
affected by causal changes and are associated with survival. They offer new prospects for further 
investigations of cancer pathogenesis.  

Methods 
Data 
We used preprocessed mRNA expression (mRNA-seq), miRNA expression, protein expression, 
somatic CNV (all them downloaded from the ICGC Data Portal, release 17) and DNA methylation 
data (ICGC, release 18). The LUAD dataset contains molecular profiles of 473 patients, KIRC 
dataset contains molecular profiles of 515 patients, and HNSC 422 patients. The data comes from 3 
tissue types: primary tumor solid tissue, normal tissue adjacent to primary and normal blood derived 
tissue.  Expression data are the most commonly and consistently available ICGC data type. Training 
and validation sets were created from each cancer cohort in a ratio 2:1, meaning that two-thirds of the 
corresponding data set was used for building the models and one-third of it for validating the 
models. No bias in tumor stage, age, overall survival, or gender distribution was observed between 
the training and validation sets.  
 
Identification of prognostic signatures 

For each molecular profile (i.e. for each miRNA, mRNA and protein) in the training dataset two 
groups of patients were constructed based on expression levels of the miRNA, mRNA or protein 
respectively: lower than the 25% quartile and higher than the 75% quartile. A log-rank test was then 
applied to determine if the difference in terms of overall survival between the two groups was 
significant (p-value < 0.05). Clustering of significant survival-associated genes (probes) was 
performed through a non-negative matrix factorization (NMF) with ranks tested from 2 to 6. 
Representative genes (probes) for each cluster were selected based on their basis coefficient. All 
possible combinations of representative genes (probes), such that to have only one representative per 
cluster, were tested to obtain the signature. A multivariate Cox regression analysis on miRNA 
expression values was used to compute a risk for each combination. For each signature, coefficients 
from a multivariate Cox regression analysis on the training cohort were used to compute a risk on the 
validation cohort. Performance was assessed through a concordance index (c-index). To test the 
significance of a particular molecular signature, we selected random genes (probes) from the ICGC 
datasets and trained a Cox model using these genes (probes).  The number of the randomly selected 
genes in each test was equal to the size of the particular molecular signature. Sampling was 
performed over 1000 iterations to obtain an average C-index and its standard deviation.  
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Abstract 

The acquisition of the cancer phenotype is a process largely dominated by changes in 

cell signalling that can hardly be interpreted as the consequence of isolated changes in 

gene activity but rather as the results of complex interactions among these. Here we 

propose the use of a transformation of individual gene expression data into numerical 

descriptors of signalling pathway activities that are further used to understand the 

evolution of the disease across the different tumour grades. We have studied the clear 

cell renal cell carcinoma (ccRCC) data from the ICGC Cancer Genome Consortium 

Challenge.  

  

Introduction 

Complex traits, including most diseases, are associated with complex changes in 

biological pathways rather than being the direct consequence of single gene alterations. 

In particular, the hallmarks of cancer, which include sustaining proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis, and activating invasion and metastasis [1] are all directly or 

indirectly related to pathologically altered signalling processes. The idea of using the 

information contained in different biological pathways to understand complex traits, such 

as diseases, is recently gaining acceptance [2]. Signaling pathways provide a formal 

representation of the processes by which the cell triggers actions in response to stimulus 

through a network of intermediate gene products that configure signaling circuits. 

Interestingly, such circuits can directly be related to cell functionalities. Recently some 

methods have developed that focus particularly on the estimation of the activity of these 

stimulus-response signaling circuits from gene expression data [3, 4]. Here we show 

how to use gene expression values in the context of signaling circuits to understand the 

molecular mechanisms underlying the evolution of tumor grade and tumor stage.   

 



Method 

We evaluated the pathological signal transduction changes in ccRCC by analysing the 

TCGA ccRCC samples (https://dcc.icgc.org/repository/release_18/Projects/KIRC-US) [5] 

over a set of selected previously cancer related pathways that includes PI(3)K/AKT and 

mTOR signalling pathways taken from KEGG. The pathways are decomposed into 

elementary signalling circuits that connect receptor proteins with effector proteins, 

whose mission in the cell is triggering functional responses to the stimuli received by the 

receptors (see [4] for details). Activation-inactivation relationships between nodes 

(proteins) along the circuits enabled us to use a graph traversal methodology for 

updating signal intensity at each visited node and finally computing a global value of 

signal transduction for the circuit (thereinafter signalling circuit activity or SCA).  

Both tumour grade (TG) and tumour stage (TS) status per sample were obtained from 

clinical data from the ccRCC page. Patients were stratified according to their status (TG 

and TS) and normal samples were grouped into a single initial state (s0). Then, a 

chronogram with the precise sequence of pathologic events that occurs after reaching 

each tumour status was reconstructed by comparing SCA at each stage or grade 

against all the precedent ones (eg. G3 against G2, G1 and G0). Here we focused only 

into monotonically increasing or decreasing behaviours and only significant differences 

were reported.  

 

Results and discussion 

When samples are clustered on the basis of their SCA patterns a clear separation 

between cases and controls is observed (Figure 1) which provides an initial evidence of 

the relationship of these values to the biological progression of cancer. 

 
Figure 1. Hierarchical clustering of SCA values. Normal samples are coloured in 
blue and cases in red 



When the SCA values are compared across tumour developmental phases, several 

systematic activations or deactivations of signalling circuits across TGs and TSs is 

observed. 

 

 

 
Figure 2: Evolution of SCA values corresponding to different circuits with progressive behaviour. 
Upregulated circuit/grades (left) and circuit/stages (right) are coloured in red, and downregulated in blue. 
The different red/blue intensities describe an increase in up/down regulation in late cancer phases. 

 

Interestingly, activated and deactivated functions triggered by signalling circuits have a 

direct relationship to cancer progression. Thus, biological processes such as cell cycle, 

survival, angiogenesis, proliferation, antiapoptosis or cell survival are systematically 

activated as TG and TS progresses. On the other hand, protein synthesis, metabolism, 

glucose homeostasis and, in general, differentiation processes are inhibited, as 

expected from the indiferentiation process that occurs in cancer. Other functions, like 

cell adhesion are also deactivated, favouring thus invasion and metastasis.  



Conclusions 

We concluded that gene expression data can be transformed into measurements of 

SCA values that account for cell functionalities. Such measurements cell functionalities 

can be related to cancer progression, in particular TG and TS. The cancer hallmarks 

already described [1] can be considered the consequences of a series of functional 

hallmark that are elegantly described in the approach proposed here. 

We propose that approaches that model cell functionalities will be not only more 

accurate in predicting phenotypic traits, such as the disease progression, but will also 

provide insights into the molecular mechanisms that account for such phenotype.  
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1 Introduction
The International Cancer Genome Consortium is a global project aiming to produce a description of
the genomic, transcriptomic and epigenomic changes in 50 different cancer types. The current 18th
release of the ICGC data provides varied biochemical analyses for a set of 12,807 cancer patients.
The CAMDA conference concerns the development of computational approaches for analysis of large-
scale biomedical datasets. The ICGC dataset has been used in the shared “CAMDA challenge” first
in 2014 and now in 2015. Having participated in the 2014 challenge we now extend our work of
analysing cancer datasets through functional classification followed by analysis of the genetic basis
behind the classification. In our 2014 entry we studied the ICGC cancers as separate datasets and
evaluated various approaches for feature selection [Björne et al., 2014]. In the current work we expand
our analysis to the whole ICGC cross-cancer dataset. With the increased scale of the data, we are
able to utilize the somatic mutation data that illuminates the underlying causes of the cancer. With the
effective embedded feature analysis of an ensemble classifier we can evaluate the type of mutations that
affect the clinical outcome of a patient’s cancer. Comparison with the COSMIC cancer gene census
shows that genes central in causing cancer are also central for predicting its progression.

2 Materials and Methods

2.1 The ICGC cancer data
We use the publicly available parts of release 18 of the ICGC project. Files for the 55 cancer projects
were downloaded from the ICGC data portal1 [Zhang et al., 2011]. For use in experiments the TSV-
formatted files were converted into an SQLite database approximately 30 Gb in size.

2.2 COSMIC cancer gene census
The COSMIC database (Catalogue Of Somatic Mutations In Cancer) is a collection of somatic mu-
tations present in cancers, developed by the Wellcome Trust Sanger Institute2. The COSMIC cancer
gene census is a list of genes known to be causally implicated in cancer [Futreal et al., 2004]. It thus
represents a conservative set of the most strongly cancer related genes. The version of the census used
in these experiments was downloaded on May 18th 2015 and consists of 572 genes.

2.3 Machine learning methods
For machine learning we use the scikit-learn library, version 0.16.1. We perform binary classification,
using the Linear SVC (support vector machine) and Extra Trees classifiers [Geurts et al., 2006]. In the
current 0.16.1 release of scikit-learn both of these methods support sparse matrices allowing efficient
processing of large data sets.

1https://dcc.icgc.org
2http://www.sanger.ac.uk/cosmic
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For estimating classification performance we use the scikit-learn implementation of the AUC-
metric (area under the ROC curve). The AUC is a robust and largely class-distribution independent
performance measure, whose results are in the range 0.5 (completely random) to 1.0 (perfect classifi-
cation).

3 Experimental Setup

3.1 Division of Data
In performing classification experiments we optimize parameters using five-fold cross-validation on a
training dataset. Final results are produced on a separate hidden dataset left aside for this purpose. We
divide ICGC cancer samples by patient into training and hidden sets in a 7:3 ratio. The sets are divided
on a pseudorandom distribution seeded with the ICGC donor id, ensuring that the same patient always
belongs to either the training or the hidden set regardless of the selection of patients for a particular
experiment.

3.2 Classification
Our goal is to develop a classification system for predicting the prognosis of a patient’s cancer based
on the available biochemical data. The prognosis is of interest as a classification task in itself, but also
as a preliminary step for the feature analysis that aims to uncover the genetic basis of the prognosis.

The primary classification we perform is the division of the ICGC cancers that go into “complete
remission” (disappearance of all signs of cancer) vs. those that progress to the death of the patient.
These represent the two, opposite end-points for a cancer patient. This division follows our per-cancer
classification task from our 2014 entry, and applied for the whole ICGC dataset, for samples with SSM
(simple somatic mutation) data, this division results in a set of 3491 examples for complete remission
and 1307 examples for progression until death.

In optimizing the parameters powers of ten in the range -10 to 10 are evaluated for the C-parameter
of the SVM and values 10, 100 and 1000 are tested for the number of trees in the Extra Trees Classifier.
In previous experiments we have seen performance increases when using up to 10,000 trees with
ensemble methods but due to the large size of the cross-cancer datasets this is not feasible in the
current experiments.

3.3 Features
Unlike our entry from 2014, in this work we use only one ICGC data type per classification experiment.
This is primarily due to the number of cases where only some of the data types are available for a
patient. For example, the SSM data is available for 7,908 patients whereas the EXP-A data is available
for only 3,135 patients.

The primary data type used in our experiments is the SSM (simple somatic mutations). When
generating features based on SSM the primary challenge is the sparsity of the data. Even the most
common SSM in the ICGC data, MU62030 (a single base A>T substitution in the gene BRAF), occurs
in only 405 donors across all the ICGC projects. Therefore, individual mutations have to be grouped
if they are to be used as machine learning features. We first experimented with simply grouping all
mutations within one gene, that is, we used simply the binary mutation status of a gene as a feature.
While reaching decent classification performance, such features are not very interesting for the analysis
of the mutational basis behind a certain classification. Therefore, in the final experiments we grouped
mutations both by gene and by their functional impact on that gene (e.g. exon variant, intron variant,
missense etc). This feature type mostly preserved the classification performance of gene-level features,
while providing a more interesting feature set for the subsequent mutation analysis.
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As a point of comparison for the SSM mutations we tested gene expression levels. Gene expression
is commonly used a sort of “fingerprint” for the phenotype of a particular cancer. In a machine learning
context gene expression levels are easier to work with than the SSM, as at least some value is present
for each gene in each analysed sample, but the expression features are of course “one step removed”
from the underlying genetic causes of the cancer. For the expression data we chose the sequencing
based expression (EXP-S) as that is more commonly available for the ICGC samples than the array
based expression (EXP-A).

3.4 Feature Analysis
The feature analysis is based on the embedded feature importance ranking provided by the Extra Trees
Classifier [Breiman et al.]. In ensemble methods the relative rank (depth) of a feature contained in a
decision tree can be used as a measure of the importance of that feature in performing the classification.
In our 2014 CAMDA entry we have shown that compared with e.g. greedy forward selection and
recursive feature elimination the embedded feature importance estimation results in relatively stable
performance progression. To determine the relevance of the selected features we compare them against
the genes in the COSMIC Cancer Gene Census.

4 Results and Discussion

4.1 Classification Performance
The classification results are shown in Table 1. The primary feature set of SSM results in a decent
performance of slightly above 0.7 AUC. Both the support vector machine (SVM) as well as the extra
trees classifier (ETC) provide similar performance. Unlike in our 2014 entry using the ETC does not
result in higher performance, perhaps due to the larger class sizes. SSM-based classification with the
SVM is generally faster and has slightly higher performance, but does not provide the embedded fea-
ture analysis. With both the SSM and EXP-S feature sets we observe a notable increase in performance
compared with the five-fold cross-validation of the training set and the final classification of the hidden
set. We speculate this may be due to the size of the datasets and the additional 20% of training data
available when classifying the hidden set. A learning curve experiment should be done in the future to
evaluate this assumption.

4.2 Feature Analysis
As seen in Figure 1 known cancer genes are more common among the features selected as most im-
portant. This alludes to some biological relevance behind the automatically learned classification and
the automatic selection of features.

Table 2 shows the top 20 features from the feature importance ranking produced with the extra
trees classifier for the SSM feature set. The most important feature turns out to be any mutation in
an intergenic region. As such a feature has no gene name it becomes very common and is possibly
slightly correlated with one of the two classes.

The more interesting features are those generated for mutations within known genes, as they define
both a gene name and a functional consequence (depending on the mutated site). The top three genes,
EGFR, KRAS and TERT are traditional, well known cancer genes. Mutations in the epidermal growth
factor receptor (EGFR or ErbB-1) can lead to uncontrolled cell division and as such it is a central
gene in a number of cancers [Lynch et al., 2004]. The V-Ki-ras2 Kirsten rat sarcoma viral oncogene
homolog (KRAS) is a regulator of growth-related signaling and its mutation is essential for the growth
of many tumours [Kranenburg, 2005]. Mutations in Telomerase reverse transcriptase allow telomerase
to remain active in somatic cells and thus leads to immortal cancer cells [Zhang et al., 1999].
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Table 1: Classification performance. Example counts are shown for the two classes followed by the AUCT and
AUCH scores for the (t)raining and (h)idden sets.

features classifier remission progression AUCT AUCH

SSM Extra Trees 3491 1307 0.612±0.056 0.704
SSM Linear SVC 3491 1307 0.611±0.030 0.722
EXP-S Extra Trees 4592 1210 0.565±0.033 0.819
EXP-S Linear SVC 4592 1210 0.602±0.044 0.758

Table 2: The most important features. Each feature is the id of the gene combined with the mutation consequence.
The census column indicates whether the gene is among the known cancer genes in the COSMIC census.

# gene id gene name consequence census
1 intergenic region
2 ENSG00000146648 EGFR missense variant •
3 ENSG00000133703 KRAS missense variant •
4 ENSG00000164362 TERT upstream gene variant •
5 ENSG00000121879 PIK3CA missense variant •
6 ENSG00000175826 CTDNEP1 stop gained
7 ENSG00000023516 AKAP11 missense variant
8 ENSG00000187172 BAGE2 intron variant
9 ENSG00000141510 TP53 intron variant •
10 ENSG00000169031 COL4A3 intron variant
11 ENSG00000096968 JAK2 intron variant •
12 ENSG00000182185 RAD51B intron variant
13 ENSG00000149531 FRG1B stop gained
14 ENSG00000141510 TP53 exon variant •
15 ENSG00000115896 PLCL1 intron variant
16 ENSG00000210154 MT-TD downstream gene variant
17 ENSG00000174473 GALNTL6 intron variant
18 ENSG00000229981 LINC01435 intron variant
19 ENSG00000130226 DPP6 intron variant
20 ENSG00000140945 CDH13 intron variant
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Figure 1: Known cancer genes among the selected features. Known cancer genes from the COSMIC census
are more common among the features automatically selected for classifying cancer progression.
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5 Conclusions
We have extended our classification-based cancer analysis approach to the entire ICGC cross-cancer
dataset. With the increased size of the dataset, sparse feature groups such as the SSM become usable
as classification features, and can achieve decent classification performance for predicting cancer pro-
gression. The SSM represents the most causally relevant feature set for understanding the nature of the
ICGC cancers, as these individual mutations form the driving force of many tumours. While analysis
of the feature selection results shows a correlation with known cancer genes, more work is needed to
evaluate the role of the less known mutations.

The classification into complete remission or progression until death is a classification where all
examples are positive for being cancers. However, common cancer genes present in the COSMIC
census rank highly as features relevant for predicting the progression of cancer. We speculate that
genes commonly mutated in cancer are also among the strongest drivers of cancerous growth, making
them good indicators for the severity of progression, with mutations in several such genes being more
likely to result in a fatal cancer.

As future work we hope to find ways to better utilize the mutation data on the level of individual
mutations, to provide the kind of analysis required for the current biomedical research of separating
the important driver mutations from the random passenger ones. As with our earlier project, we will
publish all of our experimental code under an open source license3.
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1     INTRODUCTION 

Landscape of most cancers involve twelve important pathways (“target pathways”) that regulate 

three core cellular processes “cell fate”, “cell survival” and “genome maintenance”; the “driver” 

genes, which are responsible for the formation of tumors, function through these signaling 

pathways [1]. We undertake a novel investigation of the roles of these pathways using a 

differential network analysis of the protein expression datasets on three cancers (Head and Neck 

Squamous Cell Carcinoma, Lung Adenocarcinoma and Kidney Renal Clear Cell Carcinoma). 

These datasets were available to us from International Cancer Genomic Consortium (ICGC) as 

part of the CAMDA 2015 challenge data. We pursue a meta-analysis of protein expressions to 

investigate whether each of these target pathways plays a significant role in these three cancers 

in the sense that the proteins associated in these pathways interact differently between two 

clinical groups (“progression” or “complete remission”) of patients. From our analysis of the 

protein expression data, overall, RAS and PI3K signaling pathways appear to play the most 

significant roles in these three cancers. This analysis suggests that these two signaling pathways 

should be investigated further for their roles in cancers. It is interesting to note that these two 

main pathways are related to “cell survival” function. 

2     DATASETS  

We have analyzed the preprocessed challenge datasets for CAMDA 2015 provided by the 

International Cancer Genomic Consortium (ICGC). For our study, we have considered the 

protein expression and the clinical profiles of the patients for three cancers, Head and Neck 

Squamous Cell Carcinoma (HNSC), Lung Adenocarcinoma (LUAD), and Kidney Renal Clear 

Cell Carcinoma (KIRC). A set of 132 proteins is present in the protein expression profiles of 

each of the three cancers; the patient sample sizes of HNSC, LUAD and KIRC were 212, 237 

and 454 patients, respectively.  The clinical profile of each of the cancer type represents the 

disease status (progression or complete remission) of each patient. In summary, we have two 

groups of patients for each cancer type and the set of recorded protein expression values of 132 

proteins on each of them.  
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3     METHODOLOGY 

3.1 Pathway analysis:  From a recent study [1], it has been found that there are 140 “driver” 

genes/proteins which can promote the formation of tumors if affected by intragenic mutations.  

These “driver” genes can be classified into twelve signaling pathways which are: TGF − β, 

MAPK, STAT, PI3K, RAS, Cell Cycle/Apoptosis, NOTCH, HH, APC, Chromatin modification, 

Transcriptional regulation and DNA damage control. Among these, TGF − β, MAPK, STAT, 

PI3K, RAS and Cell Cycle/Apoptosis regulate “cell survival”; NOTCH, HH, APC, Chromatin 

modification and Transcriptional regulation regulate “cell fate”; while the DNA damage control 

signaling pathway regulates “genome maintenance”. We refer to these twelve signaling pathways 

as “target pathways”. 

We separately analyze the protein profiles of the three cancer types using “GO” clustering tool 

[2, 3], and group the proteins according to their biological pathways. Out of the pathways 

obtained, we only considered the proteins included in the “target pathways” for our analysis. 

3.2 Differential network analysis: In order to identify whether the network structures of the 

“target pathways” have changed from the complete remission group to the progression group, we 

performed differential network analysis [4] using the R package dna [5]. This differential 

network analysis for each pathway is conducted based on connectivity scores between the 

proteins in these target pathways. Initially, to get an idea about the network structures in each of 

the two groups, graphical networks are constructed by connecting each pair of proteins for which 

the connectivity scores exceed a threshold. The difference in connectivity between the two 

groups (progression versus complete remission) is computed mathematically, using the following 

statistic: 

																				∆�ℱ	 = 1
��� − 1	 
 �	���′

�� − ���′�� �
���′∈ℱ

	,														�1	 

where ℱ denotes the set of proteins present in a “target pathway” and � denotes the number of 

proteins in ℱ. Here ���′
�� 	and	���′�� 	are the connectivity scores between the proteins � and �′ in the 

progression and complete remission groups, respectively. For our analysis, the connectivity score 

of a protein pair in a network is taken to be the Pearson’s correlation coefficients of the 

expression values of the two proteins in the corresponding sample data. A permutation test is 

then carried out using the test statistic	∆�ℱ	 and the corresponding observed level of significance 

(p-value) is obtained. 

In addition to testing the overall pathway significance, we also test whether the connectivity of 

each single protein has changed between the two groups (progression versus complete remission) 

using the following statistic:  
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where � denotes the set of all proteins and � is the number of proteins in �.  Once again, a 

permutation test is carried out for each protein using the test statistic	���	 and the corresponding 

p-value is obtained. 

3.3 Rank Aggregation: The p-values, obtained using the test statistic given in (1), are used to 

obtain ranked lists of the “target pathways” for each cancer type. Here, ranking is done in such a 

way that the “target pathway” with the lowest p-value gets rank 1, the next one gets rank 2 and 

so on. Since, these ranked lists vary according to the cancer type; we need to aggregate them in a 

meaningful way to get an overall ranked list which would then rank the pathways by their global 

order of importance. In other words, this overall ranked list may provide us with the most 

important “target pathways” in all the three cancers. The R package RankAggreg [6], which is 

based on Cross-entropy Monte Carlo algorithm [7], is used to get this overall ranked list.  

For our second analysis at the individual protein level, the p-values obtained using the test 

statistic given in (2), are used to rank the set of 132 individual proteins. An overall ranked list of 

these proteins is obtained using the R package RankAggreg [6]. 

4     RESULTS 

We find representation of five out of twelve “target pathways” in our sample of 132 proteins; 

they are the PI3K signaling pathway, Cell Cycle, Apoptosis, RAS signaling pathway and MAPK 

signaling pathway. Based on our differential network analysis [4, 5] between the two groups of 

patients (progression vs complete remission) using the test statistic given in (1), with Pearson’s 

correlation coefficients as scores and absolute distance measure carried out for each of the 3 

cancer types, we have the following findings:  the RAS signaling pathway is highly significant 

(p-value = 0.026) and MAPK signaling pathway is marginally significant (p-value = 0.082) in 

HNSC; for LUAD, PI3K signaling pathway is highly significant (p-value = 0.013). Table 1 

shows the overall ordering of the 5 “target pathways” for the three cancers along with the rank 

aggregated list. Thus overall, the RAS signaling pathway appears to be most important followed 

by the PI3K signaling pathway, based on our meta-analysis of the available data on three 

cancers. 

Table 1: Target pathways ordered by statistical significance (p-values) for each cancer type along 

with the overall ordering by rank aggregation. 

Cancer Type Pathway Ordering by p-values 

HNSC R, M, P, A, C 

LUAD P, C, A, R, M 

KIRC R, A, M, P, C 

Overall R, P, M, A, C 

R:  RAS Signaling pathway          

M: MAPK Signaling pathway     

P:  PI3K Signaling pathway        

A:  Apoptosis                                    

C:  Cell Cycle        
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A graphical representation of the network structure of the proteins in the two groups of patients 

for RAS signaling pathway in HNSC is shown in Figure 1. In this figure, two proteins are 

connected if the connectivity score between them is significantly large. Different colors and 

shades in the figure represent positive or negative correlations and the thickness of the lines 

represents the strength of the associations. A visual inspection reveals some obvious differences 

in the network connectivity between the two groups of patients. Notably, GAB2, MAPK1, MET, 

and BAD show noticeably different activities in the two networks. The corresponding genes are 

known oncogenes; e.g., GAB2 – melanoma, MAPK1 – multiple cancers, MET - papillary 

carcinoma, BAD - pancreatic cancer, prostate cancer.  

 

 

 

 

 

                                                                                                                                                                                                                                      

 

 

Figure 1: Network structure for RAS signaling pathway in Head and Neck Squamous Cell           

Carcinoma (HNSC) 

 

Our analysis of individual proteins using the test statistic (2) produces Figure 2. The pie charts 

represent the proportions of top fifty differentially connected proteins for each of these pathways 

in the three cancers and in the overall aggregated list of proteins. Once again, PI3K and RAS 

take the top two most important spots in terms of differential network connectivity. 

5   DISCUSSION 

It is known that for most cancers with solid tumors the genes in the above mentioned “target 

pathways” display somatic mutations and change their protein products [1]. Here in this purely 

quantitative analysis of the existing protein expression data of three different cancers also reveals 

the significant alteration of the proteins in PI3K and RAS pathways.  It is interesting to know 

that PI3K is a regulatory subunit, which binds to cell-surface receptors and to the RAS protein. 

Genes and proteins in PI3K and RAS have been investigated as therapeutic targets for many 

cancers ([8], [9] etc). Our findings are consistent with this and suggest that continued future 

efforts be made in this direction. 
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Figure 2: Relative contributions of the 5 “target pathways” in each of the three cancers separately 

as well as for all the three cancers combined. 
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Introduction 

Large scale data is being generated by consortia like the TCGA and the 1000 Genomes Project in an 

effort to understand the molecular basis of diseases.  Population based studies are key to 

understanding the effect of genomic variations on phenotype and are essential to pave the way for 

personalized medicine.  Integration of basic research into medical practice becomes more effective 

when information from different technology platforms are incorporated into our understanding of 

disease process. 

The current report is an attempt to analyse  complex multi-omics lung adenocarcinoma data using 

intuitive methods coupled with powerful visualization.   The motivation of this was to demonstrate 

that  dynamic viewing of multi-omics data is key to better understand biological patterns  and to 

arrive at testable hypothesis. 

Materials and Methods 

Lung Adenocarcinoma datasets were accessed from the ICGC Data Portal. All the analysis was 

performed using GeneSpring 13.1® (www.genespring.com) and Strand NGS (www.strand-ngs.com)  

Results and Discussion 

We initially examined the extensive metadata supplied by TCGA [1].  The metadata encompassed 

mutations, focal aberrations and copy number aberrations for the key driver genes, i.e. the 

oncogenes and tumour suppressors.   Using the metadata framework in GeneSpring, we examined 

each of these classes of aberrations. 

Focal aberrations: Focal copy number aberrations are known to contain driver genes [2].  They are 

also thought to favour tumour development and progression evolutionarily [3].  The observation 

that ERBB2 has a focal amplification in “oncogene-positive” subset of patients [1] was also seen by 

us. In addition, we noticed that some genes like the EGFR and KRAS oncogenes preferentially 

undergo focal amplifications, while tumour suppressors like TP53 and RB1 undergo deletion (Fig.1).  

However some tumour suppressors like STK11 and KEAP1, oncogenes like ERBB2 and HRAS and 

genes involved in splicing U2AF1 have both focal amplifications and deletions. 

 



  

Mutations: Aligning the known mutations as metadata, identified several interesting patterns. As 

reported in [1], mutations in p53  are diverse and span several locations, while mutations in KRAS 

are confined to only a few codons.  This was seen very clearly in Fig.2.  In addition we observe that  

 

About two thirds of the KRAS mutations occur in patients who do not have TP53 mutations, 

indicating a partial exclusivity.  Lack of overlap between KRAS and EGFR mutations has been 

reported in lung cancers [1, 4]. TP53 and KRAS mutations have been shown to be largely mutually 

exclusive events in colorectal cancer [5], but our observation reveals that it is present in lung 

adenocarcinoma as well. 

 

Fig1: Focal amplifications in key driver genes.  

While most oncogenes have focal amplifications 

(first panel after the cluster) and tumour 

suppressors have deletions (middle panel), some 

key drivers have both (extreme right panel). Each 

row corresponds to a patient sample. 

Fig.2: Patient wise alignment of mutations in 

TP53 and KRAS.  Each line represents a 

patient with a mutation, while the grey 

represents patients with no mutations. Left 

panel is sorted on TP53 mutations, while the 

right panel is sorted on KRAS mutations.  

About 2/3
rd

 of KRAS mutations are in patients 

who do not have TP53 mutations. 

Fig.3:  Patient wise alignment of copy number aberrations and 

mutations with the cancer subtype.  Deletions in STK11 and 

KEAP1 are predominantly located in PP subtype.  For BRAF,  PP 

subtype contains both amplifications and deletions, while the PI 

and TRU contain only amplifications.  Similarly, PP subtype 

contains the maximum mutations of STK11 and KEAP1 while PI is 

the subtype having NF1 mutations. 



We also observed that mutations in STK11, KEAP1 and NF1 were also related to cancer subtype. 

STK11 and KEAP1 were more prominent in PP subtype while NF1 was more prevalent in PI subtype 

(Fig.3). 

 Copy Number aberrations:  Examination of large scale genomic aberrations revealed events 

happening in most of the patients genomes in this cohort.  As seen in Fig.4, patients who do not 

harbour aberrations in EGFR also do not contain deletions and amplifications in BRAF and MET.  In 

addition patients containing amplifications in EGFR also contain amplifications in BRAF and MET. 

Since EGFR is on the p arm of chromosome 7 and BRAF and MET on q arm, it could indicate either 2 

highly coordinated events occurring leading to the observed behaviour or result of a single event.  

Similar patterns were also seen for KRAS, MDM2 and CDK2 as well as for CCND1 and HRAS.  STK11, 

KEAP1 and SMARCA4 show almost identical pattern of genomic deletions, indicating these gene 

deletions to be the result of a single deletion event.  Chromosome 9p alteration has previously been 

reported [6]. 

 

Effect of copy number amplifications on gene expression:  Elevated levels of gene expression in 

cancer could be due to gene amplification, or due to its regulation by miRNAs or other transcription 

factors.  Using expression and genomic copy number data from same patients, we performed 

correlation to identify genes whose over expression is possibly due to gene amplification.  Thus such 

genes exhibit high correlation coefficient when their expression values are correlated with copy 

number values, as seen in Fig. 5. 

 

Fig.4: Similar patterns of alterations  across 

different genes located on the same chromosome. 

Fig.5: While normal samples do 

not show any correlation between 

their expression levels and copy 

number values, some of the 

overexpressing genes show a very 

high correlation with their copy 

number indicating that the 

amplification is driving the 

expression. 



Comparative proteomics and mRNA profiles:  As mentioned above, we observed that two thirds of 

KRAS mutations occur in patient samples which do not have TP53 mutations, indicating partial 

exclusivity.  To understand the changes in expression profile due to presence and absence of KRAS 

and P53 mutations, the protein expression and mRNA sequencing data were clustered together. 

Prior to clustering, the datasets were independently scaled by auto-scaling to ensure the data from 

sequencing and protein array are comparable [7]. The proteins and their corresponding mRNA’s 

were cross mapped based on common Gene Symbol annotation. The final data table included 452 

columns of expression data, corresponding to 226 samples each from sequencing and protein array 

for the 123 gene-protein rows commonly measured between platforms. K-means clustering revealed 

two distinctive behaviours. The cluster 0 entities expression values increase when TP53 is mutated 

as compared to when KRAS is mutated.  Cluster 2 on the other had has opposite behaviour with 

expression value in TP53 mutated samples decreasing as compared to those with KRAS mutations. 

 

More interestingly, in the small subset of patients where mutation of both KRAS and TP53 is 

observed, entities in cluster 0 mimic the KRAS mutation behaviour whole in cluster 2 the expression 

pattern in the KRAS and TP53 mutants drop down further (Fig.6).   

Conclusions 

We demonstrate here that use of powerful and intuitive visualizations are critical to  understanding 

and analysing complex multi-omics data.  By using this approach, we have identified new mutation 

patterns and relationships between the TP53 and KRAS mutations.  Further we have also used the 

metadata framework to easily narrow down the genes where copy number changes are the result of 

a common event.  The fact that several patients show similar aberrations also indicate that certain 

chromosomal events are common within a population.  Investigating the TP53 and KRAS partial 

exclusivity further by integrating proteomic and transcriptomic data, we also identified entities 

which could potentially give an answer to the partial exclusive presence of the mutations. 
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We implemented a pipeline for processing and analysis of high-throughput sequencing and microarray 
level 3 data from ICGC Cancer Genome Consortium Challenges with the aim of finding the driver 
mechanisms in three cancers: Lung Adenocarcinoma (LUAD), Kidney Renal Clear Cell Carcinoma 
(KIRC), and Head and Neck Squamous Cell Carcinoma (HNSC).
We used a random forest to identify the genes that are most relevant for classifying the samples into 
normal tissue and tumor. The top 50 genes for each of the three cancers served as input for the SOMs 
showed in Figure 1. It can be observed that 50 genes are enough to achieve a fairly good separation of 
classes. DESeq2 was used to produce a list of differentially expressed genes (DEGs). Heatmaps using 
the genes with the greatest fold change from the DEGs are shown in Figure 2. It can be observed that 
the DEGs also achieve a fairly good separation of classes. The gene lists obtained from the random 
forest classification and the DEGs were used to identify possible relevant pathways for each cancer. 
From the top most represented pathways all genes belonging to those pathways were extracted. In the 
three cancers the Metabolic pathway (hsa01100) was enriched, and Salivary Secretion (has:04970), 
Cell Adhesion (hsa04514), and PI3K-Akt signaling pathways were enriched for HNSC, KIRC, and 
LUAD respectively. The new gene list obtained from the pathways was queried against the other levels 
of data: proteomics, miRNAs, copy number variation, and methylation. In the case of proteomics, we 
checked for indication of phosphorylation in any of the genes involved. Furthermore, DESeq was also 
used for obtaining a set of differentially expressed miRNAs and miRbase was used to find the known 
target genes. Figure 3 shows the miRNAs pathways in Cancer from where we found MIR17HG 
expressed.
The pipeline for preprocessing, analysing, and integrating all the datasets was implemented in Anduril; 
all steps are automated and it is available upon request (and soon made available in Anduril's website). 
Anduril is a framework for scientific data analysis that automates parallelization making it ideal for 
working with large datasets. 

 

a) LUAD          b) KIRC      c) HNSC 

Figure 1. SOM using top50 most relevant genes from random forest classification of normal (0) vs 
tumor (1) samples. The color represents the distance between the points in the lattice (closer → blue, 
farther → red).
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Figure 2. Heatmaps from gene expression of differentially expressed genes for each cancer.

a) LUAD b) KIRC c) HNSC

Figure 3. MiRNAs pathways in Cancer: miR-17~92 known as oncomiR-1 is known to be disregulated 
in cancer and we found MIR17HG (the primary transcript of the cluster) to be expressed in our 
samples.
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Introduction: From a systems biology perspective, gene set analysis (GSA) allows us to  understand the molecular 
basis  of  a  genome-scale  experiments.  Employing  a  systems  biology  approach  that  includes  several  genome-scale 
measurements gets a better functional interpretation. In this work we present a multidimensional  method to the functional  
profile of mRNA and miRNA studies which integrates  both expression data. 

Methods: We downloaded  20 datasets  from The Cancer Genome Atlas  (http://cancergenome.nih.gov/),  containing 
tumoral and normal samples.  Differential expression analysis was carried out for mRNA and miRNA levels (Bioconductor 
library edgeR).   Information from miRNA was transferred to gene level by adding its effects and generating  a new index 
which  ranks genes according to their differential inhibition by miRNA activity across biological conditions. Given both 
ranking statistics of mRNA and miRNA, for each functional class, we apply the logistic regression models for GSA.   P-
values were corrected for multiple testing using the method Benjamini and Yekutieli. 

Results: This new approach has allowed to obtain a genomic functional profiling for different cancers when using an 
integrated  approach  with  mRNA  and  miRNA  data.   In  our  study  we  used  Gene  Ontology  terms 
(http://www.geneontology.org/)  to  define  gene  sets,  obtaining  detailed  functional  results  for  each  ontology (biological 
process, cellular component and molecular function). 

Discussion: Integrative Gene Set  Analysis  of  mRNA and miRNA expression data constitutes  a  novel  approach of 
functional profiling which allows us to  detect interactions between gene and miRNA that account for functional roles 
dependent on several genomic properties or measurements. From this method, we can differentiate several  patterns for  
functional modules to understand and discover of new cell functionalities with complex dependences.

Conclusion: This method may be successfully applied in genomic functional profiling, transferring miRNA data to gene 
level and integrating mRNA and microRNA data at the same level, so that GSA can be properly used.  Functional results  
take  advantage  of  the  knowledge  already  available  in  biological  databases  and   can  help  to  understand  large-scale 
experiments from a systems biology perspective. 
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1 Introduction
Life sciences have been highly transformed by the emergence of the so-called “big data” era,
synonimous of the large and multi-omics data sets now available. The increasing availability of
such data provides a real challenge: integrate them to improve our understanding of biological
concepts. As an example, the The Cancer Genome Atlas (TCGA) project aims at improving our
ability to diagnose, treat and prevent cancer by analysing large numbers of human tumors, using
gene expression, copy number, microRNA and DNA methylation data [1, 2]. In this contribution,
the main goal consists of taking advantage of these multi-omics data to identify cancer driver genes
(e.g. oncogenes) and to understand their roles within the genome. Previous work has focused on
incorporating copy number data to filter potential regulators in a Bayesian module network analysis
[3] whereas others have added mutation data for studying driver genes [4].

We recently developed AMARETTO, an algorithm that integrates copy number, DNA methy-
lation and gene expression data to identify a set of driver genes by analysing both cancer and
normal samples, and constructs a module network to connect them to clusters of co-expressed
genes [5] and applied AMARETTO on several single cancer sites. Here, we propose a pancancer
AMARETTO analysis. To accomplish this, we cluster the modules of co-expressed genes in com-
munities according to their similarities to identify pancancer driver genes. This will allow the
identification of master regulators across all cancers associated with common pathways across
different types of tumors, and eventually may lead to the identification of pancancer drug targets.

2 Materials and methods
2.1 Data preprocessing

We used gene expression, copy number and DNA methylation data from TCGA for 11 cancer sites,
namely bladder cancer (BLCA), breast cancer (BRCA), colon and rectal cancer (COADREAD),
glioblastoma (GBM), head and neck squamous carcinoma (HNSC), clear cell renal carcinoma
(KIRC), acute myeloid leukemia (LAML), lung adeno carcinoma (LUAD), lung squamous carci-
noma (LUSC), serous ovarian cancer (OV) and endometrial carcinoma (UCEC) (for more details
on these data sets, see Table 1). All data sets are available at the ICGC [6] and TCGA data
portals [7].

The gene expression data were produced using Agilent microarrays for GBM and ovarian cancer,
and RNA sequencing for all other cancer sites. Preprocessing was then done by log-transformation
and quantile normalization of the arrays. The DNA methylation data were generated using the
Illumina Infinium Human Methylation 27 Bead Chip. DNA methylation was quantified using β-
values ranging from 0 to 1 according to the DNA methylation levels. We removed CpG sites with
more than 10% of missing values in all samples. We used the 15-K nearest neighbour algorithm to
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TCGA Cancer Site Copy number data DNA methylation data Gene expression data
Samples Genes Samples Genes Samples Genes

BLCA 178 1,974 123 472 181 15,432
BRCA 968 1,523 887 890 985 16,020

COADREAD 578 2,523 570 522 589 15,533
GBM 481 1,561 321 395 501 17,811
HNSC 365 2,184 308 753 371 15,828
KIRC 501 3,052 497 567 509 16,123
LAML 166 1,681 170 613 173 14,296
LUAD 487 3,585 367 678 489 16,092
LUSC 487 2,592 355 679 490 16,219

OV 528 1,499 540 510 541 17,814
UCEC 500 2074 496 821 508 15,706

Table 1: Overview of the number of samples and genes for each cancer site.

estimate the remaining missing values in the data set [8]. Finally, the copy number data we used
are produced by the Agilent Sure Print G3 Human CGH Microarray Kit 1M×1M platform. This
platform has high redundancy at the gene level, but we observed high correlation between probes
matching the same gene. Therefore, probes matching the same gene were merged by taking the
average. For all data sources, gene annotation was translated to official gene symbols based on the
HUGO Gene Nomenclature Committee (version August 2012). Due to the size of TCGA data,
the TCGA samples are analysed in batches and a significant batch effect was observed based on a
one-way analysis of variance in most data modes. We applied Combat to adjust for these effects
[9].

2.2 AMARETTO: multi-omics data fusion

Our approach for analysing TCGA cancer data is based on AMARETTO, a novel algorithm
devoted to construct a module network of co-expressed genes through the integration of multi-
omics data [5]. More precisely, AMARETTO is a two-step algorithm that (i) identifies a set of
potential cancer driver genes by integrating copy number, DNA methylation and gene expression
data, (ii) connects these cancer driver genes to their regulated modules of co-expressed genes using
a penalized regulatory program. We describe in details these two steps below:

• Step 1: To establish a list of cancer driver genes, we investigate the linear effects of copy num-
ber and DNA methylation on gene expression through a linear regression model performed
on each gene independently. Then we integrate DNA copy number and DNA methylation
data to reduce the list of candidates. This will restrict the cancer driver genes to genes with
either copy number or DNA methylation alterations. These alterations are detected using
the GISTIC [10, 11] and MethylMix [12] algorithms for copy number and DNA methylation
data respectively.

• Step 2: Given the cancer driver genes identified in Step 1, Step 2 aims at connecting them
to their regulated targets to construct the module network. First, the filtered data are
clustered in modules of co-expressed genes using a k-means algorithm with 100 clusters.
Then, we regress independently all cancer driver gene expression values using as regressors
every module’s mean expression, i.e. each module is written as a linear combination of cancer
driver genes. In order to induce sparsity, we choose to focus on the elastic net regularization
[13]. The module network is finally constructed by running iteratively the two following steps:
(i) reassigning genes based on closed match to new regulatory programs, (ii) performing the
regulatory program, until less than 1% of the cancer driver genes are assigned to new modules.
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2.3 Pancancer module communities

The pancancer analysis we perform is based on a careful comparison between the module net-
works constructed using AMARETTO for all considered tumor types. More precisely, we evaluate
whether there is a significant association between all pairs of modules through a hyper-geometric
test. We correct for multiple hypothesis testing using the false discovery rate [14]. We consider the
association to be major if both of the following conditions are satisfied: (i) the adjusted p-value
is < 0.05 and (ii) the overlap between two modules is larger than 5 genes. This defines a mod-
ule network according to a score, measured through the minus log-transformation of the adjusted
p-value. We used the open-source platform Cytoscape to visualize this network [15].

We finally cluster the module network in communities of modules using the clustering algorithm
OH-PIN [16], implemented in Cytoscape. This algorithm has already proven to be powerful for
identifying both overlapping and hierarchical modules in Protein-Protein Interaction Networks
(PPI networks). To run it, we need to define an overlapping maximal score that limits the overlap
between two communities (usually set to 0.5 [17]) and a threshold that controls the size of the
communities (set to 2).

2.4 Gene set enrichment analysis

To assign biological meaning to these communities of modules, we perform gene set enrichment
analysis based on the databases GeneSetDB [18] and MSigDB [19]. For the latter, we restrict the
enrichment to hallmark (H), curated (C2), GO (C5), oncogenic (C6) and immunologic signatures
(C7) gene sets, which are best suited for our study. The enrichment is evaluated by performing
multiple hyper-geometric tests, corrected using the false discovery rate (FDR) [14].

3 Results
Running AMARETTO on the 11 cancer sites and performing pancancer analysis as described
leads to a module network with 1673 edges between 592 nodes (Figure 1). Given this network, the
clustering algorithm OH-PIN then identified 28 communities containing between 3 to 81 modules
each. An example of such a community is highlighted in red in Figure 1.

Analysing more precisely the community represented in Figure 1, we found 35 regulators from
6 modules and representing 5 different cancer sites, namely BLCA, HNSC, LUAD, LUSC (two
modules) and UCEC. The top two genes in this community are GPX2 and NQO1, with GPX2
present as a regulator in all modules and NQO1 in half of the modules. GPX2 is expressed at crypt
bases of the intestinal epithelium and in tumour tissues. It also has been shown to be involved
in cell proliferation [20]. NQO1 has been shown to be involved in the regulation of inflammatory
mediators associated with prostate tumorigenesis [21].

Next, we used gene set enrichment analysis to investigate which pathways are enriched in this
community. We found that chronic inflammation pathways were highly enriched in this community
of modules. This included the NFE2L2 transcription factor [22]. This gene has proven to be critical
in the lung’s defense mechanism against oxydants, providing more precisely protection against
chemical carcinogenesis, chronic inflammation or asthma [23]. In addition, a gene expression
signature related to the response to cigaretto smoking is enriched in this community [24] and is
also relevant for the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD), a risk factor
for lung cancer.

4 Discussion
We have presented a multi-omics data fusion framework that combines gene expression, DNA
methylation and DNA copy number data across 11 cancer sites. Our goals are to find common
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Figure 1: Visualization of the module network. The nodes of the graph are the modules of all
cancers (represented using different colors according to the cancer type). An edge between two
modules stands for a significant association between them. One of the community detected through
OH-PIN is represented in red.

regulators across different types of tumors independent of anatomical location based on our hy-
pothesis that tumors are more similar when considering their molecular makeup compared to their
clinical profile. Our results show that pancancer communities of modules exist with common can-
cer driver genes. We highlight one community that is linked with chronic inflammation across
carcinoma with a squamous nature including bladder cancer (BLCA), head and neck carcinoma
(HNSC), lung cancers (LUAD and LUSC) and also including endometrial cancer (UCEC). More
specifically, we identified two genes, GPX2 and NQO1, as pancancer regulators of chronic inflam-
mation in these tumors.
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Abstract 

Most biological phenotypes are too complex to be described as consequences of the 

activities of individual genes but rather as a complex interaction among these. Here we 

propose the transformation of individual gene expression data into numerical descriptors 

of signalling pathway activities and its use to predict the mode of action (MOA) of 

chemicals. Here we addressed the Challenge 1a: SEQC Rat TGx - rat liver response to 

chemicals data, Topics 1 and 2. Our results show how the performance of the 

transformed values is quite good and how the predictions derived from RNA-seq seem 

to be better that the ones derived from microarrays.  

  

Introduction 

Many complex traits, as drug response, are associated with complex changes in 

biological pathways rather than being the direct consequence of single gene alterations. 

Actually, the idea of using the information contained in different biological pathways to 

understand complex traits, such as disease or drug mode of action is gaining 

acceptance [1]. Signaling pathways provide a formal representation of the processes by 

which the cell triggers actions in response to particular stimulus through a network of 

intermediate gene products. In particular, specific sub-networks (or circuits) that connect 

stimulus reception proteins to proteins that produce the consequent cell response can 

directly be related to cell functionalities. Recently some methods have developed that 

focus particularly on the estimation of the activity of these stimulus-response signaling 

circuits from gene expression data [2, 3].  

 

Method: 

We obtained Rattus norvegicus (rat) signalling pathway information from KEGG 

database. A total of 23 signalling pathways were examined. Each pathway was split up 

into their elementary signalling circuits, as described previously [3]. Activation-

inactivation relationships between nodes (proteins) along the circuits enabled us to use 



a graph traversal methodology for updating signal intensity at each visited node and 

finally compute a global value of signal transduction for the circuit, that we call signalling 

circuit activity therein. Unlike in previous methods [2, 3], the algorithm used here for the 

calculation of these signalling circuit activities is platform independent and can use gene 

expression data either from microarrays or from RNA-seq. 

The microarray and RNAseq datasets (GSE55347,GSE47792) were downloaded from 

the GEO database. The raw microarray data were normalized by RMA method. The 

probe IDs were converted into Entrez Gene IDs. The probe expression values were 

summarized into gene expression values by 90 quantile. 

The RNAseq data were already normalized, as provided by the MAGIC pipeline and we 

used them directly, and annotated with Entrez gene IDs (duplicated gene IDs were 

excluded). 

In total, 1334 genes were used to calculate signalling circuit activities for the 867 sub-

pathways that compose the 23 signalling pathways studied here. These signalling circuit 

activities and normalized gene expression values were used to compare their respective 

prediction accuracies. 

ANOVA was used to detect the differential expressed genes and signalling circuits.  All 

training and test set groups were used together for ANOVA.  

For the prediction, support vector machine (SVM) with radial basis function (RBF) kernel 

was used [4].  Two parameters for an RBF kernel were used: cost and sigma. Best 

sigma and cost parameters were selected among different values tested. The model 

optimized with 10 fold cross validation.  

(MOAs were used as endpoints for training the model as follows:  

Training Set: 

 “PPARA”, “CAR/PXR”, “CONTROL”, “UNKNOWN”(AhR, Cytotoxoc, DNA Damage) 

Test Set: 

 “PPARA”,  “CAR/PXR”, “CONTROL”,“UNKNOWN”(ER, HMGCOA) 

 

Results and discussion 

For both platforms the prediction accuracy obtained using signalling circuit activities as 

classification variables was reasonable and better than the corresponding accuracy 

obtained when using genes alone (see Figure 1).  

It must be taken into account that not all the chemicals studied are acting at the level of 

the signalling pathways and therefore some MOAs will probably be deficiently predicted 

using only information on signalling. For example, HMGCOA (all) and AHR 

(LEFLUNOMIDE) MOAs are known to act at the level of metabolic pathways. 

 

 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55347
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47792
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Model accuracy= 72.7% 

 

Gene expression 

 

Model accuracy = 40.90909 

Microarray 

Signalling Circuits 

 

Model accuracy = 60.0% 

 

Gene expression 

 

Model accuracy=48.9% 

 

Figure 1. Prediction accuracy obtained using signalling circuit activities or gene expression 

values as classification variables obtained for RNA-seq and microarray data.  

 

An example in which the different effect of chemicals over pathways is obvious is 

depicted in Figure 2. It presents the analysis results of the PPARA signalling pathway 



among the two MOA groups. Common MOAs groups of the test and training sets were 

merged for this analysis. 

In the PPARA group (the group which exposed to PPARA agonists) the PPAS signalling 

pathway present a clear alteration in the lipid metabolism, while the AHR (and actually 

the other MOA groups, data not shown) have the pathway unaltered. These analyses 

were carried out for both, RNAseq and microarray data, rendering highly correlated 

results. 

 

PPARA group 

 

AHRgroup 

 

Figure 2. Differential activities in the PPAR signalling pathway in presence of chemicals 

belonging to the PPAR (left) and AHR (right) groups.  

 

Conclusions 

The method presented here shows that transforming the gene expression data into 

mechanism-based biomarkers within the context of signalling pathways is useful to 

predict molecular phenotypes that are controlled by signalling pathways. In addition, we 

were able to distinguish different phenotypes using signalling circuit activities.  

We propose that approaches that model cell functionalities will be not only more 

accurate in predicting phenotypic traits, such as the drug response, but will also provide 

insights into the molecular mechanisms that account for such phenotype.  
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1. Introduction

The purpose of this study is two fold: (i) develop a classifier that has high accuracy
in both microarray and RNA-seq platforms and (ii) study the concordance of multi-
ple standard classifiers in the two platforms. We use seven standard classifiers and an
adaptive ensemble classifier built around them to achieve these goals. The dataset for
our study is resulted from a Rat liver experiment conducted by the FDA SEQC consor-
tium to assess the performance of modern gene transcript expression profiling methods
and released as part of 2015 Critical Assessment of Massive Data Analysis (CAMDA)
challenges. The Rat liver experiment was designed for developing predictive models to
predict the chemical Mode of Action (MOA). A previous comprehensive analysis (Wang
et al. 2014) of the above gnomic data suggested weak classification accuracies for a set
of classifiers applied to multiple platforms.

2. Data

The dataset consists of gene expression responses profiled by Affymetrix microarray
and Illumina RNA-seq in rat liver tissues from 105 male Sprague-Dawley Rats, which
were exposed to 27 different chemicals represented by 9 different MOAs. Microarray
and RNA-seq platforms contain gene expression measurements of nearly 31,000 and
46,000 genes, respectively. In the original experiment, a training set is formed with
45 rats, which were treated with 15 chemicals corresponding to MOAs of “PPARA”,

∗somnath.datta@louisville.edu
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“CAR/PXR”, “AhR”, “Cytotoxic”, “DNA damage”, and 18 controls. Test set con-
tains data on 36 rats which were treated with 12 chemicals corresponding to “PPARA”,
“CAR/PXR”, “ER”, “HMGCOA” and 6 controls. We noticed that two MOAs, “ER”
and “HMGCOA”, are presented only in the test set. Due to duplication and removal
of some initial samples, the data set profiled by RNA-seq contains 116 samples, which
causes imbalance between training sets among platforms. We further noticed, approxi-
mately 22,253 average expressions per sample in RNA-seq data were recorded as “NA”,
where it indicates an insufficient number of reads mapped onto the gene to provide a
reliable gene expression estimate. As a result, around 16,133 expression measurements
remained, once all “NA”s were removed.

3. Methodology

Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), Linear and
Quadric Discernment Analysis (LDA, QDA) are some examples of standard techniques
widely applied in classification problems. For high dimensional data, these classifiers are
often combined with dimension reduction, variable selection, or penalization techniques
such as Partial Least Squares (PLS), Principle Component Analysis (PCA), Random
Forest (RF) based importance measures, L1 regularization, etc., for greater applica-
bility and improved prediction accuracy (Boulesteix, 2004, Dai, 2006). However, the
accuracies of these individual classifiers are highly variable and dependent on the true
underlying data structures of various classes. Datta et al. (2010) described an optimal
adaptive ensemble classifier via bagging and rank aggregation to offer a classification
solution that has good performance across multitude of data structures. The ensemble
classifier we used is developed with a set of seven standard classifiers, namely, SVM, RF,
LDA, PLS+RF (Random Forest using the PLS terms), PLS+LDA (linear discriminant
analysis using the PLS terms) , PCA+RF (Random Forest using the principal compo-
nents), PCA+LDA (LDA using the principal components), and Recursive Partitioning
(RPART).

We conducted three different analyses to study the performances of our classifiers in
classifying the MOAs: (1) Classifiers trained and tested on each individual platforms;
(2) Classifiers trained in one platform and tested on the other platform; (3) Classifiers
trained on the perturbed training set with permuted gene expressions for each platform
followed by accuracy calculation for identification of important variables (genes).

In general, there is no established criteria to define prediction for an unknown class
that was not represented in the training data. Thus, we performed the 1st analysis
after removing all test samples belonging to two classes of “ER” and “HMGCOA”.
However, for the 2nd and the 3rd analyses we were able to retain all classes and data
since in effect the the classifiers were trained on the union of training and testing data
in each platform. We used normalized expression levels that came from microarray
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data using Robust Multi-Array Average (RMA) expression measurements (Irizarry et
al., 2003), whereas data obtained for RNA-seq was already normalized via the Magic
normalization. We felt that it would be more meaningful to perform an analysis with a
common set of genes represented in both platforms for a comparative study. To that end
the expression data for 8336 unique common genes were used in building our classifiers.

In the first analysis, we developed a set of classifiers directly using the training data
with different classification algorithms and made predictions on the given test dataset
in the same platform. However, since the classifier needed to run on both platforms
for the 2nd analysis, each gene expression measurement was standardized, separately
for both platforms, prior to the 2nd analysis. We performed a 10-fold cross validation
for each individual classifier to select the number of components for PLS and PCA
methods, separately for two platforms. We employed the same number of components
to build the ensemble classifier. For the third analysis, we permute the expression of a
single gene in the training set and fit a classifier on the modified training set followed
by accuracy calculation on the test set. This was done for each of the gene common to
both platforms. The reduction in accuracy as compared to the original (unperturbed)
training set is a measure of importance of a given gene in the classification process. In
order to reduce the computational burden, we did not use the ensemble classifier for this
purpose. Instead the component classifier PLS+LDA which had an overall accuracy
close to that of the ensemble classifier was used. The genes are then ranked according
to their importance for both platforms.

4. Results

The results of analyses 1 and 2 are summarized in Figure 1. The left panel shows that
the performance of each classifier is similar in both platforms since all the data points
are fairly close to the diagonal line (Pearson’s r =0.92). The accuracy of individual
classifier varies from 17% to 75%, and as to be expected, the performance of the ensemble
classifier is the best in both platforms. The overall accuracy of the optimal classification
method is slightly better in microarray compared to RNA-seq (75% vs 67%). On the
other hand, we observe a lower prediction accuracy for the class “PPARA” in RNA-
seq (55.56%), compared to the microarray (88.87%) platform (not shown in the figure).
Results of the second analysis summarized on the right hand plot shows even greater
agreement between the prediction accuracies of the classifiers trained on a bigger training
set in one platform and used to predict using the bigger test data on the other platform
(Pearson’s r =0.99). Remarkably, the ensemble classifier was able to provide 100%
accurate predictions for both cases, regardless of the additional complexity caused by 8
varieties of classes. In this analysis, the component classifier PLS+LDA also performed
similarly to the ensemble classifier in both cases yielding 100% accurate class predictions.
Clearly, between the two types of dimension reduction methods, PLS performs better
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Figure 1: Plots between predication accuracies of RNAseq vs microarray test sets, by
eight different classification techniques, for classifiers trained and predicted on individual
platforms and cross platforms.

than PCA throughout this study. The performances of classifiers integrated with PCA
are clearly the weakest among all individual classifiers in each scenario.

From the third analysis, we observed that five of ten most important genes for clas-
sification (Cyp1a1, Fam111a, Ugt2b, Akr1b8, and Hbb) were common between the two
platforms. From literature search we found that CYP1A1 encodes a member of the cy-
tochrome P450 superfamily of enzymes which catalyze many reactions involved in drug
metabolism. Likewise, Ugt2b belongs to a large family of proteins capable of detoxifying
a wide variety of both endogenous and exogenous substrates such as biogenic amines,
steroids, bile acids, phenolic compounds and various other pharmacologically relevant
compounds, including numerous carcinogens, toxic environmental pollutants and pre-
scription drugs. Mutations in Hbb have been implicated in a number of blood disorders.

5. Discussion

In this study, we developed an ensemble classifier built on a set of standard classifiers to
predict MOAs in Rat liver experiment data profiled by microarray and RNA-seq. The
newly constructed ensemble classifier performed reasonably well in both platforms sep-
arately; we observed comparable overall predictability of MOAs in both test sets with
75% and 67% accuracies for microarray and RNA-seq, respectively. In an earlier classifi-
cation approach applied on the same data, Wang et al. (2014) reported averaged overall
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accuracies of 58% and 61% for microarray and RNA-seq, suggesting a slightly better
predictability in RNA-seq. However outcomes of these two studies are somewhat incom-
parable due to the differences in test data sets used. For example, we omit two unknown
classes present in original test sets after including controls as a separate class, whereas
in their analysis, two unknowns were considered as another class while discarding con-
trols. Interestingly, once we trained classifiers to make predictions on cross platforms,
the ensemble classifier provided 100% accurate predictions for all 8 classes presented
in the whole experiment. This result exhibits a perfect cross platform concordance
in view of classification. Clearly, throughout the whole analysis, none of the individ-
ual classifiers outperformed the ensemble classifier with respect to the overall accuracy.
However, PLS+LDA performs equally well in many cases. We observe widely different
classification performances among standard classifiers, which reflects the unreliability of
restricting to a single classifier in case of high dimensional classification problems. On
the other hand, this also proves the utility of the adaptive ensemble classifier which is
expected to perform as good or better than the individual classifiers.
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Advances in RNA sequencing technology and the ability to generate deep coverage data 
in the form of millions of reads provide an unprecedented opportunity to probe the 
universe of gene expression. Standard RNA-seq analysis protocols map reads against a 
host reference genome to determine the placement of the reads on the genome. Mapping-
based protocols are complemented by assembly procedures to accurately profile the 
origin of reads condensed into isoform transcripts. Many reads are discarded by these 
protocols and the possibility that reads originate outside of the extant genome is usually 
ignored. In this work we aim to profile the origin of every last read delivered by RNA 
sequencing, in order to identify shortcomings of existing technologies as well as identify 
novel uses of RNA-Seq data. Our study reveals that the vast majority of unmapped reads 
are human reads discarded by the mapping protocol. Many unmapped human reads 
correspond to novel exon junctions from previously unknown isoforms. Another 
significant source of discarded human reads are sequences originating from the 
recombined Ig locus of B and T lymphocytes (BCR and TCR sequences). In addition to 
human DNA, the human body harbors a diverse microbial ecosystem, and we identified a 
substantial number of reads mapping to non-human sequence. Careful analysis of the 
BCR and TCR sequences in conjunction with the microbial communities provides an 
opportunity to profile immune system function across tissues directly from RNA-seq 
data.  
 
We use 1641 RNA-Seq samples corresponding to 175 individuals and 43 sites from 
GTEx project: 29 solid organ tissues, 11 brain subregions, whole blood, and two cell 
lines,  LCL and cultured fibroblasts from skin. Illumina Hiseq 2000 platform was used to 
produce Illumina RNA-Seq data sets. RNA-Seq libraries were prepared from total RNA 
using poly(A) enrichment of the mRNA.  We use the unmapped reads to obtain a detailed 
profile of the microbial and immune components of the human body (unmapped reads 
were extracted from the .bam files download from the gtex storage).  Wee obtained 6.77 
+-1.60 million 76bp unmapped reads per sample. First we filtered out 54.68%+7.28% of 
the unmapped reads, which were low-quality and/or low complexity (using FASTX and 
SEQCLEAN).  We attempted realignment of remaining reads to the human reference 
sequences using the bowtie2 aligner (up to 10 mismatches were allowed).   Bowtie2 was 
able to identify 33.18%+-4.82% of the reads compatible with human genome and 
transcriptome reference (ENSEMBL hg19 build, ENSEMBL GRCh37 transcripome).  
 



The remaining high-quality unique reads are used to perform a survey of the microbiome 
and immune components. We used phylogenetic marker genes to assign candidate 
microbial reads to the bacterial and archeal taxa. We use Phylosift to perform taxonomic 
classification of the samples and compare it across the tissues. The Phylosift approach 
uses hypervariable taxa-specific gene families to provide the precise resolution for the 
bacteria and archaea community assemblages. Hyper-variable regions from gene families 
are previously identified to be nearly universal and present in a single copy allowing 
differentiating between species and taxa.  Reads are also mapped to a reference database 
of viral (n = 1,401), bacterial (n = 1,980) and fungal (n = 32) genomes downloaded from 
NCBI. To study the distribution of of B and T cells cross individuals and tissues we use 
reads mapped to the V(D)J regions of the Ig loci. Those recombinations correspond to 
early stages of T and B cell maturation.  
 
A total of 713 taxa were assigned with Phylosift, with 8 taxa on the phylum level.  Most 
of the taxa we observe are bacterial and a smaller portion is archeal .We observed no 
evidence of the presence of nonhuman eukaryotes.  We observe all tissues to be 
dominated by Proteobacteria. No microbial organisms were observed in heart, pituitary 
and adrenal gland.  All other tissues contain at least onebacterial or archeal phyla (0.79+-
0.55  phyla per sample ). We observe two viruses harbored in multiple tissues. EBV virus 
is present in 20% of the skin samples and 66% of the liver samples and it is not present in 
any of the brain samples. Enterobacteria phage phiX174 virus is present in 20% of the 
skin samples and is not present in liver and brain tissues. 
 
 
Examining immune and microbial genes in GTEx can help define typical profiles for a 
healthy tissue. It is essential to monitor microbial and immune diversity, and this work 
may eventually help diagnose immune and microbiome imbalance in a tissue specific 
manner.   
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Introduction The MAQC1 and SEQC2, 3 projects have introduced a key resource for testing future 

developments of microarray and RNA-seq analysis tools, as required in clinical and regulatory settings. In 

this study, based on SEQC data set, we investigate the sensitivity, specificity and reproducibility of RNA-

Seq differential expression calls. Going beyond general results of the original SEQC studies2, 3 I will 

extend and complement the comparative analysis by considering differential expression tests that are 

closer to typical ‘real world’ experiments. In particular I will concentrate on comparisons of samples A 

and C, where C consists of 3 parts of sample A and 1 part of sample B.1, 2 This pair of samples has the 

smallest average effect strength ('signal') amongst the different possible pair-wise comparisons of the 

MAQC/SEQC ABCD samples. Exploring the effect of RNA-Seq pipeline choices, we now also consider 

all 55,674 known AceView genes,17 rather than the 23,437 genes of the originally published comparison 

with Affymetrix HGU133Plus2.0 microarrays. A key result of our study is thus as comprehensive 

benchmark of alternative methods for gene expression estimation and differential expression calling, 

representative of the wide range of tools now available and reflecting the rapid development of the field. 

The presented metrics assess sensitivity, specificity, and reproducibility for both genome wide analysis 

and the identification of top candidates for further follow-up. 

 

Results  Comparing the SEQC samples A and C we are expecting more genes with a stronger expression 

in sample C because it contains, in addition to RNA from sample A, also RNA of genes expressed in 

sample B. Benchmark results compare a wide range of tools for expression estimation (EE), including r-

make4, Subread5, TopHat26/Cufflinks27, SHRiMP28/BitSeq,9 and kallisto10, in combination with a range 

of established tools for differential expression calls (DEC), including limma11, edgeR,12 and DESeq2.13 

Tools were selected to provide a good overview of the current state of the art in RNA-Seq data analysis. 

Depending on the methods for expression estimation and DE calling, the number of detected 

differentially express genes vary roughly between 7,000 – 10,000 (Fig. 1). Sensitivity in general depends 

less on the method for differential expression calling, while more variation is observed for the different 

approaches in estimation of expression levels. Remarkably, there nevertheless is only limited agreement 

of the lists of genes identified by different methods for differential expression calls, with a typical 

pairwise agreement of 56–67%. To investigate these discrepancies we examined M(A) plots, where genes 

are represented by dots coloured according to which methods identified them as differentially expressed 

(Fig. 2). In the left panel (for AvsC) we can identify areas where different DEC methods are particularly 

sensitive. Variation in the sensitivity of DEC methods for different effect strengths (M) and gene 

abundances (A) reflects the range of approaches to data normalization and statistics used for DE calling. 

Among the examined DEC methods, DESeq2 appears to be the most conservative in calling DE genes of 

low abundance (low average expression). This may be appropriate considering the relatively high 

variance of low count data that is characteristic of weakly expressed genes in RNA-Seq.14 Also weakly 

expressed genes might be relatively more affected by site-specific variation arising during library 

preparation3, as seen in the right panel of the Fig. 2, which shows a same–same sample comparison – 

genes identified there as ‘differentially expressed’ are false positives (FPs) in a search for biologically 

relevant differences. 

The SEQC study design1 – 3 provides us the unique possibility to further examine the site-specific 

effects. In particular, we can calculate an eFDR (empirical False Discovery Rate) by comparing the cross-

site sensitivities for AvsC, CvsC and AvsA (Fig. 3, and Fig. 4 left panel). The number of false positives 

(FPs) can be reduced when appropriate methods15, 16 are applied to remove the unwanted variation by 

analysing the experiment in context of similar experiments obtained from the public repositories. In our 

study we can use different sequencing site to mimic such ‘context’. We have applied the PEER tool16, 

which has performed the best in the SEQC study3, to remove the unwanted variation. The eFDR has been 



reduced noticeably from typical eFDR reaching up to 50% to not crossing in general the 20% (Fig. 4 left 

vs middle panel). As the eFDR is strongly dependent on the combination of EE method and DEC method, 

even after PEER some sequencing site pairs obtain more than 60% eFDR (outlier sites for kallisto). As 

the eFDR level is still not satisfactory the further filtering is needed as was shown in MAQC1 and SEQC2, 

3 studies. In terms of RNA-Seq, unlike for microarrays, in addition to filter for small changes also the 

filter for small expression levels is required (see Methods for threshold details; reasoning, approach and 

consequences will be extended in the full version of the manuscript). This is the direct consequence of the 

sampling nature of NGS14. Application of the dedicated filters which fix the EE+DEC pipelines 

sensitivity for intra-site AvsC comparison to about 3000 differentially expressed genes reduced the eFDR 

for a typical site pair below 2.5% for almost all cases. Just for SHRiMP2/BitSeq and kallisto used 

together with edgeR the typical eFDR is higher but still below 5 %. Adding filtration by removing the FPs 

not only lower the eFDR but also increase the agreement between DEC methods as now the method 

specific FPs has been removed. The agreement has increased from 60-67% (after PEER correction) to the 

level of 86-94% depending on site, EE and DEC method. 

In medical and life sciences the goal is to produce the accurate gene signatures – lists of 

differentially expressed genes which can be reproduced in the other laboratory. This challenge can be seen 

in different ways depending on the study design and the next steps which will be taken with the provided 

gene signatures. In terms of the whole genome studies the interest is in the accuracy of the list of all 

differentially expressed genes. Based on our study we can conclude that agreement between sequencing 

sites depends strongly on the selected DEC method when no addition filtering is used: typically 50-68% 

for limma, 66-72% for edgeR and 72-78% for DESeq2. Application of the additional filtering, although 

reduce the sensitivity, increase the agreement and makes that all DEC method have more similar ranges: 

typically 77-80% for limma, 81-83% for edgeR and 82-84% for DESeq. There are studies, however, 

where the full list of differentially express genes is not of interest. More important is list of ‘top’ 

candidates which can be further tested in follow-up studies. As here not the sensitivity but rather 

specificity is of the main concern, the filtering is more than welcome. In Figure 5 the summarized 

agreement (on y-axis in %) between topN (where N is on x-axis) differentially expressed genes (sorted by 

the effect strength) is shown. The different panels represent different DEC methods while different 

colours in violin plots represents different expression estimation methods (as specified in the legend). For 

the short top lists the agreement is strongly dependent on combination of EE and DEC methods. These 

differences are getting smaller when lists are getting longer with almost all combinations reaching 80% 

agreement for top200 and crossing 90% agreement for top1000. For a good performance for the short lists 

the solution might be to use of even stronger filters on average expression, but then the ‘true’ candidates 

with weaker average expression can be filtered out, what for many studies can be a big loss. That is why a 

better approach is to consider a different combination of EE and DEC method, eg. SHRiMP2/BitSeq + 

edgeR). 

 

Conclusions Going beyond the general comparison presented in SEQC study2, 3, we present here the 

benchmarking for scenarios which better represent the effect sizes of typical experiments. We have in 

details examined the sensitivity, specificity, and reproducibility of the RNA-Seq differential expression 

calls for a comparison of the SEQC samples A and C. We have shown that application of appropriate 

procedures and filters improves the reproducibility of both the genome wide analysis as well as the 

identification of top candidates. We also have shown that it is important to benchmark different analysis 

tools and pick the one which fits the best for our scenario. 

In particular, it is crucial to analyse results in the context of similar experiments, as such an 

approach allows to apply tools like PEER which can identify and remove hidden confounders, having a 

great influence on the eFDR without changing the overall landscape of sensitivity. We have shown, 

however, that further filtering of FPs is required to obtain acceptable level of eFDR. A cost of an 

improved specificity is the decreased sensitivity. The good news is, however, that both for the genome 

wide studies as well as for ones when the top candidates are identified the results have been improved. 

When we consider the full list of genes called as differentially expressed, both the agreement between 

sites for the same DEC method as well as the agreement between different DEC methods improves 



noticeably with filtering, making analysis results more robust and easier to reproduce across laboratories. 

The improvement from filtering can also be seen for the top ranked candidates with the strongest 

expression change. Here we can recommend in general the use of DESeq2 tool for DE calling especially 

in combination with BitSeq. This combination performed particularly well for the shorter lists of the most 

highly-ranked 50–200 differentially expressed genes. Different aspects of performance, however, vary 

across tool combinations. In general, pipelines relying on Tophat2/Cufflinks2 for estimation of expression 

levels performed the worst, while newer tools such as BitSeq (or kallisto) performed better. 

Future work for the full manuscript: For the conference presentation and the full proceedings 

manuscript, the analysis will be extended to explore DE calling by dedicated methods for BitSeq and 

Cufflinks, and examine BitSeq DE calling for kallisto bootstrapping results. 

 

Methods In this study the SEQC data set has been used (which is described in details and summarized 

elsewhere)2. Here the sequencing data of samples A and C of six Illumina HiSeq 2000 sites have been 

used. 

The expression profiles of AceView17 genes has been assessed by selected tools representing the 

state of the art approaches for expression profiling. The gene expression profiles were assessed in the 

form of read counts. R-make (based on STAR) and Subread perform the alignment to the genome what is 

followed by counting the reads which are falling into the gene regions. The TopHat2 with the G option 

represents the hybrid approach, where reads are first aligned to the virtual transcriptome and then mapped 

back to the genome. The gene and transcript expressions are then estimated with Cufflinks2 based on the 

genome based alignments. BitSeq uses directly the transcriptome alignments (here provided by 

SHRiMP2) to assess the transcripts abundances. These where then sum up per gene to obtain the read 

count estimates for genes. Kallisto represents the alignment free approach, where transcript abundances 

are assessed directly from reads based on graph pre-built with use of the transcript sequences. Also here 

the transcript expression estimates where sum up per gene to obtain the read count estimates for genes. 

Gene expression estimates for all samples were used to detect latent variables using PEER 

package16. The covariates associated with sample type were included for inference and the inferred 

hidden confounders were removed from the signal. 

Differential expression analysis has been performed with use of three dedicated R packages: 

limma, edgeR and DEseq2. In all three cases the suggested way of analysis has been performed (in terms 

of limma it includes TMM+voom pre-processing). The Benjamini-Hochberg adjustment for multiple 

testing has been performed. The genes were called differentially expressed when q-val <0.05.  When 

filtering has been applied in addition: gene effect strength has to be higher than 2 (abs(log2FC) > 1) and 

the Average Expression has to be higher than dedicated threshold. Average expression threshold was 

selected for each combination of expression estimation and DE calling method separately in order to fix 

the average intra-site AvsC sensitivity at level of 3000 genes. On average 45th percentile with SD of 2.3 

has been used (lowest for limma than DESeq2 and edgeR; lowest for Subread, then kallisto, TH2G, 

BitSeq and r-make). The same thresholds have been applied to inter-site DE calling. The DE analysis has 

been focused on down-regulated genes in A versus C comparison, as the strength of the up-regulated 

signal is limited by design of sample C as 3 parts of A and one part of B. 

Overall agreement between lists of differentially expressed genes has been calculated as ratio of 

lists intersection and lists union. Agreement of topN candidates has been calculated as ratio of intersection 

of compared topN lists and the N, where differentially expressed candidates have been order by the 

change strength. 
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Figure 1. Intra-site differential expression call sensitivity. 

For each expression estimate method (x-axis) and each DE 

calling method (colour) all intra-site A versus C 

comparisons are presented in a form of the violin plot. Y-

axis represents the sensitivity as a number of differentially 

expressed genes (with q.val<0.05). 

 

 

 

 

 

 

 

 
Figure 2. Left panel represents the overlap of the DE calling by different DEC methods for AvsC intra-site comparison, while 

right panel shows the results for the inter-site AvsA comparison. The overlap between calling as DE by different DEC methods 

is encoded by different colours. Grey clouds represent not down-regulated genes. 

 

 
Figure 3. Inter-site differential expression call sensitivity, including false-positives from same–same comparisons. For each 

expression estimate method (x-axis) and each DE calling method (panel) all inter-site A versus C comparisons (cyan) as well as 

A versus A (magenta)  and C versus C (yellow) are presented in a form of violin plots. The same–same comparisons show the 

sensitivity of methods to picking up false positives. 



 
Figure 4. eFDR. For each expression estimate method (x-axis) and each DE calling method (colour) eFDR has been estimated 

as ratio between inter-site A versus A  plus C versus C and A versus C. The left panel represents results based on not corrected 

counts with DE calling by q-val threshold. In the middle panel hidden confounders have been removed by PEER from count 

expression estimates. In the right panel additional DE calling filters has been applied (as described in methods). 

 

 
Figure 5. Inter-site reproducibility of 

differential expression calls. Comparing the 

identities and the directions of change for 

DEGs across sites, agreement is plotted for 

lists including the top-ranked genes as sorted 

by effect size (x-axis). The observed 

response violin plots depend on expression 

estimate pipeline, DE calling pipeline and 

filter choice, showing more variation and 

lower agreement levels for shorter lists. 

Results for BitSeq and DESeq2 seems to be 

the most robust. Agreement for top1000 

genes cross 90% irrespectively from the 

pipeline choices. 

Presented results were obtained based on 

expression estimates after removing the 

hidden confounders by PEER. For DE 

calling additional filters for average 

expression and effect strength have been 

applied. 
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The objective
Standard statistical methods, preferably involving test sets, can control false discovery rates in the 
enormously flexible microarray data analysis. However, it is normally assumed that a similar flexibility
in pre-processing (e.g. quality control, normalization and variance filter) was not exploited with 
knowledge of sample annotations. This leaves the typical research group with the unpleasant choice to 
either abstain from pre-processing optimization or lose formal control of their statistical tests.

We develop new computational tools that optimizes pre-processing without any use of sample 
annotations, or any use of sample cluster structure.

The Tool: Validated Imputation
High-throughput microarray data is expected to be rich on correlations. This explains the success of 
imputation algorithms, that exploit the correlations to estimate missing values. Imputation algorithms 
are usually evaluated by artificially removing known data, impute them, and check the error to the true 
values.

Our approach, which we call Validated Imputation (VI), is to use this imputation test "backwards". 
Instead of testing imputation algorithms with benchmark data, we test pre-processing options with 
benchmark imputation algorithms.

The principal idea is that proper quality filters and noise
reduction give better imputation.

Artificial example: The same data in two pre-
processings. The feature 1 value of the encircled sample
is artificially removed (for both pre-processings) and 
re-imputed, ending up somewhere on the line. In the 
noisy (purple) option, that may be far away from the 
correct value.

A Test Case
Our protein affinity array includes 3-8 replicate spots, where technical errors may appear as outliers. 
This introduces an outlier threshold as a pre-processing parameter. Outliers among triplicates can be 
estimated using the Grubbs score (maximal distance to sample mean, divided by sample estimate of 
standard deviation).

Under normality assumption, the p-value and a false-discovery rate (fdr) is calculable. High fdr implies
that many points rejected as outliers actually carried useful information. 



We have run validated imputation on data with various 
outlier thresholds, and checked which alternative that 
most often performed best. All threshold options imputed 
the same set of 5% artificially removed values, and they 
were ranked according to mean squared error. The rank 
was scaled to a number between 0 and 1 (relative rank). 
This was done multiple times, and the average relative 
rank was recorded. As seen in the figure, VI agrees in 
conclusion with the fdr analysis. Both methods suggest 
that the outlier threshold should be set to assign roughly 
120 outliers. With a more stringent threshold, the fdr 
curve shows that a large fraction of excluded data carries 
useful information, and the VI test shows that imputation 
becomes less successful.

Discussion
The test case is a promising result, suggesting that validated imputation works: it can rank different 
pre-processing options. In this case, the suggested optimum agrees with an alternative approach (the fdr
based on normality assumption). Note that VI provides slightly more information than the statistical 
test: The fdr curve shows when a large fraction of extra excluded values carries useful information, but 
fdr cannot tell if it is worth the prize, in order to exclude a few more technical errors. VI settles the 
question.

One other merit with VI is that it can be used also when there is no simple statistical test available, and 
it can be used to evaluate more or less heuristic procedures for, e.g., background correction or 
normalization. For the protein recombinant antibody array in particular, the relatively low number of 
features measured means that one must look for normalization strategies other than standard 
approaches for mRNA and DNA arrays.

We have examined if VI can be run with “any” benchmark 
imputation algorithm, by comparing the relatively simple and 
quick knn-impute algorithm [1] with the more elaborate but 
slow bpca-impute algorithm [2]. Here, we examined a variance 
filter, removing low-varying features. Overall, BPCA performs 
better, but the important message is that both algorithms agree 
on the conclusion. (In this case that a variance filter is not really 
needed, except perhaps to remove 3-5 of 120 features.)

Conclusion and outlook
Validated Imputation is a promising tool to allow pre-processing optimization of high-throughput data 
without being influenced by any final data analysis results. We will continue to develop it within the 
framework of protein antibody array data, to examine quality control filters and normalization 
strategies. The basic method is in principle applicable to any high-throughput data with inherent 
correlations, for which imputation algorithms outperform simple row-average imputation.

References:
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ABSTRACT Genetic heterogeneity is the phenomenon that several distinct sequence
variants may give rise to the same phenotype (Burrell et al., 2013). This phe-
nomenom is of the utmost importance to the exploration of the genetic basis of
complex phenotypes, as most of them have been found to be affected by numerous
loci, rather than a single locus (McClellan and King, 2010).

Current approaches for finding regions in the genome that exhibit genetic hetero-
geneity suffer from at least one of two shortcomings: 1) they require the definition
of an exact interval in the genome that is to be tested for genetic heterogeneity,
potentially missing intervals of high relevance, or 2) they suffer from an enormous
multiple hypothesis testing problem due to the large number of potential candidate
intervals being tested, which results in either many false positive findings or a lack
of power to detect true intervals.

To illustrate the scale of this multiple testing problem in genetic heterogeneity
search: When one considers all possible intervals in a genome in a dataset with 106

SNPs, the number of tests one performs is quadratic in the number of SNPs, that
is approximately 5 · 1011 candidate intervals. When ignoring the multiple testing
problem, one will obtain billions of false positives. If one performs the standard
Bonferroni correction (Bonferroni, 1936), which divides the significance threshold α
(typically 0.05 or 0.01) by the number of tests, then the corrected threshold will be
so low that hardly any finding will be statistically significant.

We propose an algorithm for genome-wide detection of contiguous intervals that
may exhibit genetic heterogeneity with respect to a given binary phenotype. More
specifically, we search for genomic intervals in which the occurrence of at least one
type of sequence variant (e.g. a point mutation or minority allele) is significantly
more frequent in one of the two phenotypic classes. Figure 1 illustrates this matter.

Our algorithm, Fast Automatic Interval Search (FAIS), automatically finds the
starting and end positions of these intervals, while properly correcting for multiple
hypothesis testing and preserving statistical power. Central to this algorithm is
an approach by Tarone (Tarone, 1990), which allows one to reduce the Bonferroni
correction factor for multiple hypothesis testing. Additionally we extended FAIS to
a Westfall-Young permutation based version called FAIS-WY. In practice, FAIS-WY
is more computationally demanding than FAIS but has increased statistical power.

We employ our novel algorithms on simulated data as well as on Arabidopsis
thaliana GWAS data. In the simulations our algorithms outperform in terms of



power the brute force approach using Bonferroni correction as well as an approach
using univariate Fisher’s Exact Test (UFE) that only checks for a significant dif-
ference in single SNPs. For the Arabidopsis thaliana GWAS data, out of 21 binary
phenotypes we were able to discover intervals of SNPs that are associated with 14 of
these phenotypes, but could not be found with previous methods. The comparison
is done to the univariate Fisher’s Exact Test (UFE) and a state-of-the-art linear
mixed model (LMM) to account for confounding due to population structure (Lip-
pert et al., 2011). The Proportion of novel intervals among all intervals found by
FAIS-WY, across all phenotypes is visualized in figure 2.
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Figure 1: Schematic illustration of the problem of detecting genomic intervals that may exhibit genetic het-
erogeneity. si[τ ; l]: interval of length l, starting at index τ of the i-th genomic binary sequence , g(si[τ ; l]) =
si[τ ]∨ si[τ + 1]∨ . . .∨ si[τ + l− 1], where ∨ denotes the binary OR operator. The problem to solve is that of finding
all intervals (τ, l) with l = 1, . . . , L and τ = 0, . . . , L − l such that the random variable g(s[τ ; l]) is statistically
associated with the phenotype y ∈ {Cases,Controls} after correction for multiple hypothesis testing.
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Figure 2: Proportion of novel intervals among all intervals found by FAIS-WY, across all phenotypes. The green
part shows the proportion of novel intervals found by FAIS-WY. The red part (UFE ± 10kb \LMM ± 10kb) are
intervals containing an UFE hit or are in close proximity (± 10kb) to one and the hit could not be found with a
LMM. The blue part (LMM ± 10kb \UFE ± 10kb) are intervals containing a LMM hit or are in close proximity
(± 10kb) to one and the hit could not be found with an UFE. The purple part (LMM ± 10kb ∩ UFE ± 10kb) are
intervals that contain both, a hit (± 10kb) found with an UFE and a LMM.
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Rapid evolution of high-throughput technologies provides us with more and more data and 
development of automated tools for data interpretation is necessary in order to process and 
understand results of such experiments. The main goal of the presented research is to analyze 
if and how information derived from the Gene Ontology (GO) database can be useful in the 
automated process of interpretation of gene groups obtained in expression level analysis.  
A number of gene similarity measures based on Gene Ontology can be found in the literature 
but there is still a lack of complete studies that compare their performance. The first objective 
of this work is to propose new relatives-based GO terms similarity measure based on a 
granular approach and which allow comparing genes on a more general level. The second 
objective is to analyze existing similarity measures, compare them and evaluate in terms of 
clustering and correlation quality. We assume that good and efficient measure should reflect 
biological dependences among genes, therefore our conclusions are based on comparison with 
expression data from two different microarray experiments.  
 
Following GO term similarity measures were analyzed and compared: 

- Semantic term similarity 
o Information content 
o Jiang-Conrath 
o Lin 
o GraSM 
o G-SESAME 
o Group and Group-soft relatives-based granular term similarity – new 

measures proposed 
- Path-based term similarity 
- Binary Similarity  

o Jaccard measure 
o Czekanowski measure 

 
Group and Group-soft are two new methods of Gene Ontology term similarity calculation 
based on the idea of granular analysis in order to compare ontology terms on more abstract 
and general level. In proposed approach, not a pair of terms is compared, but  
a pair of granules (sets) related to these terms is analyzed. 
 
In the presented research we compare gene similarity in two representations: gene expression 
values and Gene Ontology graph. The rationale leading to such comparison is that genes that 
act in the same way (fact translating into similar expression patterns) should be similar in 
other representations, e.g., annotations to Biological Process Gene Ontology. Two types of 
analysis were performed: 

- correlation of gene similarity in gene expression representation and GO 
representation, 

- clusterability of the Gene Ontology data and comparison of clustering results in both 
representations, 



 
From the clustering results perspective, gene similarity measures were used as  
a similarity/distance measures. Such analysis can show which similarity/distance measure 
gives the values making data objects more cohesive within a group and more easily separable 
between the groups, in other words, which measure gives a more clusterable data 
representation.  
 
Two DNA microarray datasets were analysed: Eisen (Eisen et al, PNAS 1998) and Iyer (Iyer 
et al., Sciene 1999).  The correlation and clustering quality results are presented in Table 1. 
 

 Table 1. Results of correlation and clustering analysis 
 Correlation 

analysis 
Clustering 

quality (NMI) 
Eisen Iyer Eisen Iyer 

Binary Czekanowski 0.483 0.102 0.468 0.092 
Binary Jaccard 0.475 0.119 0.468 0.092 
Group  0.571 0.124 0.569 0.103 
Group Soft  0.572 0.136 0.705 0.109 
GSezame  0.522 0.088 0.526 0.072 
Jiang-Conrath  0.412 0.104 0.518 0.109 
Jiang-Conrath GraSM  0.427 0.112 0.597 0.121 
Lin  0.36  0.088 0.444 0.123 
Lin GraSM  0.385 0.103 0.526 0.103 
Path 0.572 0.136 0.603 0.095 
Resnik 0.458 0.085 0.45 0.092 
Resnik GraSM 0.467 0.091 0.544 0.073 
Weighted Czekanowski 0.477 0.11 0.592 0.094 
Weighted Jaccard 0.461 0.125 0.592 0.094 

 
Finally, to verify if the gene clusters obtained for the best measure (Group Soft) do have 
biological meaning, we analyzed their gene composition and compared the results with the 
reference partition for Eisen DNA microarray dataset. Analysis shows that our clusters have 
similar gene composition. In case of original cluster C (described by Eisen keyword 
Proteasome) and our group 7 we obtained identical partition. For other groups, differences 
were more visible, however typically it was not more than a few genes. In several cases we 
obtained group that consisted of reference groups merged together – for example gene 
composition of our group 1 is: CDC10, HTB2, HTB1, HHF1, HHF2, HTA2, HHT1, HHT2, 
HTA1, MCM7, DBF2, MCM4, MCM3 which mostly covers two Eisen groups: H which 
consist of genes: HTB2, HTB1, HHF1, HHF2, HTA2, HHT1, HHT2, HTA1 and J which 
consists of genes: MCM7, DBF2, MCM4, MCM3, MCM2. This result can be explained by 
the following facts. If we analyze the original dendrogram we can notice that genes 
composing clusters J and H are placed next to each other, therefore depending on selected cut-
off value we can obtain one or two clusters. Another explanation of merging two clusters can 
be found by analyzing genes function. Original cluster H was described by Eisen by  
a keyword chromatin structure and includes, among others, genes HHF1, HHF2, HHT1, 
HHT2 that contribute to telomeric silencing. If we analyze biological function of MCM3 and 
MCM7 genes we can see that they also play a role in silencing and interact with the essential 
silencing chromatin factor, SIR2 
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ABSTRACT
Predicting disease phenotypes from genotypes is a key challenge in medical ap-

plications in the postgenomic era. Large training datasets of patients that have
been both genotyped and phenotyped are the key requisite when aiming for high
prediction accuracy. With current genotyping projects producing genetic data for
hundreds of thousands of patients, large-scale phenotyping has become the bottle-
neck in disease phenotype prediction.

Here we present an approach for imputing missing disease phenotypes given the
genotype of a patient. Our approach is based on co-training, which predicts the
phenotype of unlabeled patients based on a second class of information, e.g. clinical
health record information. Augmenting training datasets by this type of in silico
phenotyping can lead to significant improvements in prediction accuracy. We demon-
strate this on a dataset of patients with two diagnostic types of migraine, termed
migraine with aura and migraine without aura, from the International Headache
Genetics Consortium.

Imputing missing disease phenotypes for patients via co-training leads to larger
training datasets and improved prediction accuracy in phenotype prediction.

Motivation Co-training (Blum and Mitchell, 1998) is an instance of semi-supervised
learning, which is often employed in scenarios where the number of labeled exam-
ples (L) is low and the number of unlabeled instances (U) is large. The reason for
this imbalance is simply due to the high cost of labeling the data. The co-training
method benefits from a natural split of the feature space. An instance x is described
by the set X of all features, comprised of two mutually exclusive “views” X1 and X2.
A labeled object x is referenced as ((x1, x2), y) where x1 and x2 are the values for
the features in X1 and X2, and y is the class label. The algorithm then learns two
classifiers h1 and h2, one for each view of L, followed by an iterative bootstrapping
in which instances of U are labeled and the most confident ones are moved to L.

In this study, and following the spirit of co-training, the two exclusive views of
the data are the clinical covariates and the genotype data of patients with one of two
different types of migraine: a) migraine with aura and b) migraine without aura.



Results Our analysis was conducted by partitioning the entire dataset into three
groups: Set I, the training dataset : contains a subset of the patients for which all
available information is present, i.e.: a disease phenotype, a set of clinical covariates
and genotype data in the form of single-nucleotide polymorphisms (SNPs); Set II,
the co-training dataset : similar to the training set but with a much larger number
of patients. Here the patients lack a disease phenotype (unlabeled); Set III, the
evaluation dataset : is used to evaluate the method. It does not contain clinical
covariates. This is depicted in Fig. 1.a

Figure 1: Data partioning and the proposed two-stage approach to co-training

The algorithm was then applied in two sequential steps (Fig. 1.b-c): Step 1:
predict a disease phenotype for the patients in set II by learning a classifier hc from
the clinical covariates of the patients in set I; Step 2: the previous predictions are
used to augment the pool of labeled examples. Then, a genotype classifier hg is
constructed via co-training. Finally, hg is tested on III to obtain an AUC score.

Four metrics were used to compare the prediction performance of the algorithm.
These metrics corresponded to different cases that ranged from using the least pos-
sible amount of data for training (to compute a lower bound) to using all available
data (upper bound). Between these two ranges, the actual prediction performance
was reported and all these values are shown in Table 1.

Table 1: Bounds and prediction performance of in silico phenotyping. Partition of the
data into: set I = 10%, set II = 70% and set III = 20%; 100 random folds.

AUC scores
Metric µ σ
Lower bound, training only on I 0.574 0.034
Univariate featire selection on I, training on I+II 0.608 0.035
In silico phenotyping (co-training) 0.646 0.029
Upper bound, I+II with true labels 0.689 0.025
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