
Multi-Omics Analysis for Understanding the Molecular Basis of Lung 

Adenocarcinoma 

 
1
Sunil Cherukuri., 

1
Srikanthi Ramachandrula, 

1
Akanksha Mishra, 

1
Durairaj Renu,  

1
Ashwin Kalbor, 

1
Shanmukh Katragadda,  

1
Kamal Baid 

1
Arjun Duggal, Shyam Kalakoti, 

1
Rohit Gupta, 

1
Aishwara Narayanan,

 1
Anupama Ranjan Bhat,  

1
Dipa R, 

2
Danielle 

Fletcher, 
1
Pramila Tata and 

2
Vanessa Lordi 

 
1
Strand Life Sciences, Bangalore, India 

2
Agilent Technologies, Santa Clara, USA 

Introduction 

Large scale data is being generated by consortia like the TCGA and the 1000 Genomes Project in an 

effort to understand the molecular basis of diseases.  Population based studies are key to 

understanding the effect of genomic variations on phenotype and are essential to pave the way for 

personalized medicine.  Integration of basic research into medical practice becomes more effective 

when information from different technology platforms are incorporated into our understanding of 

disease process. 

The current report is an attempt to analyse  complex multi-omics lung adenocarcinoma data using 

intuitive methods coupled with powerful visualization.   The motivation of this was to demonstrate 

that  dynamic viewing of multi-omics data is key to better understand biological patterns  and to 

arrive at testable hypothesis. 

Materials and Methods 

Lung Adenocarcinoma datasets were accessed from the ICGC Data Portal. All the analysis was 

performed using GeneSpring 13.1® (www.genespring.com) and Strand NGS (www.strand-ngs.com)  

Results and Discussion 

We initially examined the extensive metadata supplied by TCGA [1].  The metadata encompassed 

mutations, focal aberrations and copy number aberrations for the key driver genes, i.e. the 

oncogenes and tumour suppressors.   Using the metadata framework in GeneSpring, we examined 

each of these classes of aberrations. 

Focal aberrations: Focal copy number aberrations are known to contain driver genes [2].  They are 

also thought to favour tumour development and progression evolutionarily [3].  The observation 

that ERBB2 has a focal amplification in “oncogene-positive” subset of patients [1] was also seen by 

us. In addition, we noticed that some genes like the EGFR and KRAS oncogenes preferentially 

undergo focal amplifications, while tumour suppressors like TP53 and RB1 undergo deletion (Fig.1).  

However some tumour suppressors like STK11 and KEAP1, oncogenes like ERBB2 and HRAS and 

genes involved in splicing U2AF1 have both focal amplifications and deletions. 

 



  

Mutations: Aligning the known mutations as metadata, identified several interesting patterns. As 

reported in [1], mutations in p53  are diverse and span several locations, while mutations in KRAS 

are confined to only a few codons.  This was seen very clearly in Fig.2.  In addition we observe that  

 

About two thirds of the KRAS mutations occur in patients who do not have TP53 mutations, 

indicating a partial exclusivity.  Lack of overlap between KRAS and EGFR mutations has been 

reported in lung cancers [1, 4]. TP53 and KRAS mutations have been shown to be largely mutually 

exclusive events in colorectal cancer [5], but our observation reveals that it is present in lung 

adenocarcinoma as well. 

 

Fig1: Focal amplifications in key driver genes.  

While most oncogenes have focal amplifications 

(first panel after the cluster) and tumour 

suppressors have deletions (middle panel), some 

key drivers have both (extreme right panel). Each 

row corresponds to a patient sample. 

Fig.2: Patient wise alignment of mutations in 

TP53 and KRAS.  Each line represents a 

patient with a mutation, while the grey 

represents patients with no mutations. Left 

panel is sorted on TP53 mutations, while the 

right panel is sorted on KRAS mutations.  

About 2/3
rd

 of KRAS mutations are in patients 

who do not have TP53 mutations. 

Fig.3:  Patient wise alignment of copy number aberrations and 

mutations with the cancer subtype.  Deletions in STK11 and 

KEAP1 are predominantly located in PP subtype.  For BRAF,  PP 

subtype contains both amplifications and deletions, while the PI 

and TRU contain only amplifications.  Similarly, PP subtype 

contains the maximum mutations of STK11 and KEAP1 while PI is 

the subtype having NF1 mutations. 



We also observed that mutations in STK11, KEAP1 and NF1 were also related to cancer subtype. 

STK11 and KEAP1 were more prominent in PP subtype while NF1 was more prevalent in PI subtype 

(Fig.3). 

 Copy Number aberrations:  Examination of large scale genomic aberrations revealed events 

happening in most of the patients genomes in this cohort.  As seen in Fig.4, patients who do not 

harbour aberrations in EGFR also do not contain deletions and amplifications in BRAF and MET.  In 

addition patients containing amplifications in EGFR also contain amplifications in BRAF and MET. 

Since EGFR is on the p arm of chromosome 7 and BRAF and MET on q arm, it could indicate either 2 

highly coordinated events occurring leading to the observed behaviour or result of a single event.  

Similar patterns were also seen for KRAS, MDM2 and CDK2 as well as for CCND1 and HRAS.  STK11, 

KEAP1 and SMARCA4 show almost identical pattern of genomic deletions, indicating these gene 

deletions to be the result of a single deletion event.  Chromosome 9p alteration has previously been 

reported [6]. 

 

Effect of copy number amplifications on gene expression:  Elevated levels of gene expression in 

cancer could be due to gene amplification, or due to its regulation by miRNAs or other transcription 

factors.  Using expression and genomic copy number data from same patients, we performed 

correlation to identify genes whose over expression is possibly due to gene amplification.  Thus such 

genes exhibit high correlation coefficient when their expression values are correlated with copy 

number values, as seen in Fig. 5. 

 

Fig.4: Similar patterns of alterations  across 

different genes located on the same chromosome. 

Fig.5: While normal samples do 

not show any correlation between 

their expression levels and copy 

number values, some of the 

overexpressing genes show a very 

high correlation with their copy 

number indicating that the 

amplification is driving the 

expression. 



Comparative proteomics and mRNA profiles:  As mentioned above, we observed that two thirds of 

KRAS mutations occur in patient samples which do not have TP53 mutations, indicating partial 

exclusivity.  To understand the changes in expression profile due to presence and absence of KRAS 

and P53 mutations, the protein expression and mRNA sequencing data were clustered together. 

Prior to clustering, the datasets were independently scaled by auto-scaling to ensure the data from 

sequencing and protein array are comparable [7]. The proteins and their corresponding mRNA’s 

were cross mapped based on common Gene Symbol annotation. The final data table included 452 

columns of expression data, corresponding to 226 samples each from sequencing and protein array 

for the 123 gene-protein rows commonly measured between platforms. K-means clustering revealed 

two distinctive behaviours. The cluster 0 entities expression values increase when TP53 is mutated 

as compared to when KRAS is mutated.  Cluster 2 on the other had has opposite behaviour with 

expression value in TP53 mutated samples decreasing as compared to those with KRAS mutations. 

 

More interestingly, in the small subset of patients where mutation of both KRAS and TP53 is 

observed, entities in cluster 0 mimic the KRAS mutation behaviour whole in cluster 2 the expression 

pattern in the KRAS and TP53 mutants drop down further (Fig.6).   

Conclusions 

We demonstrate here that use of powerful and intuitive visualizations are critical to  understanding 

and analysing complex multi-omics data.  By using this approach, we have identified new mutation 

patterns and relationships between the TP53 and KRAS mutations.  Further we have also used the 

metadata framework to easily narrow down the genes where copy number changes are the result of 

a common event.  The fact that several patients show similar aberrations also indicate that certain 

chromosomal events are common within a population.  Investigating the TP53 and KRAS partial 

exclusivity further by integrating proteomic and transcriptomic data, we also identified entities 

which could potentially give an answer to the partial exclusive presence of the mutations. 
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