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1. Introduction

The purpose of this study is two fold: (i) develop a classifier that has high accuracy
in both microarray and RNA-seq platforms and (ii) study the concordance of multi-
ple standard classifiers in the two platforms. We use seven standard classifiers and an
adaptive ensemble classifier built around them to achieve these goals. The dataset for
our study is resulted from a Rat liver experiment conducted by the FDA SEQC consor-
tium to assess the performance of modern gene transcript expression profiling methods
and released as part of 2015 Critical Assessment of Massive Data Analysis (CAMDA)
challenges. The Rat liver experiment was designed for developing predictive models to
predict the chemical Mode of Action (MOA). A previous comprehensive analysis (Wang
et al. 2014) of the above gnomic data suggested weak classification accuracies for a set
of classifiers applied to multiple platforms.

2. Data

The dataset consists of gene expression responses profiled by Affymetrix microarray
and Illumina RNA-seq in rat liver tissues from 105 male Sprague-Dawley Rats, which
were exposed to 27 different chemicals represented by 9 different MOAs. Microarray
and RNA-seq platforms contain gene expression measurements of nearly 31,000 and
46,000 genes, respectively. In the original experiment, a training set is formed with
45 rats, which were treated with 15 chemicals corresponding to MOAs of “PPARA”,
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“CAR/PXR”, “AhR”, “Cytotoxic”, “DNA damage”, and 18 controls. Test set con-
tains data on 36 rats which were treated with 12 chemicals corresponding to “PPARA”,
“CAR/PXR”, “ER”, “HMGCOA” and 6 controls. We noticed that two MOAs, “ER”
and “HMGCOA”, are presented only in the test set. Due to duplication and removal
of some initial samples, the data set profiled by RNA-seq contains 116 samples, which
causes imbalance between training sets among platforms. We further noticed, approxi-
mately 22,253 average expressions per sample in RNA-seq data were recorded as “NA”,
where it indicates an insufficient number of reads mapped onto the gene to provide a
reliable gene expression estimate. As a result, around 16,133 expression measurements
remained, once all “NA”s were removed.

3. Methodology

Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), Linear and
Quadric Discernment Analysis (LDA, QDA) are some examples of standard techniques
widely applied in classification problems. For high dimensional data, these classifiers are
often combined with dimension reduction, variable selection, or penalization techniques
such as Partial Least Squares (PLS), Principle Component Analysis (PCA), Random
Forest (RF) based importance measures, L1 regularization, etc., for greater applica-
bility and improved prediction accuracy (Boulesteix, 2004, Dai, 2006). However, the
accuracies of these individual classifiers are highly variable and dependent on the true
underlying data structures of various classes. Datta et al. (2010) described an optimal
adaptive ensemble classifier via bagging and rank aggregation to offer a classification
solution that has good performance across multitude of data structures. The ensemble
classifier we used is developed with a set of seven standard classifiers, namely, SVM, RF,
LDA, PLS+RF (Random Forest using the PLS terms), PLS+LDA (linear discriminant
analysis using the PLS terms) , PCA+RF (Random Forest using the principal compo-
nents), PCA+LDA (LDA using the principal components), and Recursive Partitioning
(RPART).

We conducted three different analyses to study the performances of our classifiers in
classifying the MOAs: (1) Classifiers trained and tested on each individual platforms;
(2) Classifiers trained in one platform and tested on the other platform; (3) Classifiers
trained on the perturbed training set with permuted gene expressions for each platform
followed by accuracy calculation for identification of important variables (genes).

In general, there is no established criteria to define prediction for an unknown class
that was not represented in the training data. Thus, we performed the 1st analysis
after removing all test samples belonging to two classes of “ER” and “HMGCOA”.
However, for the 2nd and the 3rd analyses we were able to retain all classes and data
since in effect the the classifiers were trained on the union of training and testing data
in each platform. We used normalized expression levels that came from microarray
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data using Robust Multi-Array Average (RMA) expression measurements (Irizarry et
al., 2003), whereas data obtained for RNA-seq was already normalized via the Magic
normalization. We felt that it would be more meaningful to perform an analysis with a
common set of genes represented in both platforms for a comparative study. To that end
the expression data for 8336 unique common genes were used in building our classifiers.

In the first analysis, we developed a set of classifiers directly using the training data
with different classification algorithms and made predictions on the given test dataset
in the same platform. However, since the classifier needed to run on both platforms
for the 2nd analysis, each gene expression measurement was standardized, separately
for both platforms, prior to the 2nd analysis. We performed a 10-fold cross validation
for each individual classifier to select the number of components for PLS and PCA
methods, separately for two platforms. We employed the same number of components
to build the ensemble classifier. For the third analysis, we permute the expression of a
single gene in the training set and fit a classifier on the modified training set followed
by accuracy calculation on the test set. This was done for each of the gene common to
both platforms. The reduction in accuracy as compared to the original (unperturbed)
training set is a measure of importance of a given gene in the classification process. In
order to reduce the computational burden, we did not use the ensemble classifier for this
purpose. Instead the component classifier PLS+LDA which had an overall accuracy
close to that of the ensemble classifier was used. The genes are then ranked according
to their importance for both platforms.

4. Results

The results of analyses 1 and 2 are summarized in Figure 1. The left panel shows that
the performance of each classifier is similar in both platforms since all the data points
are fairly close to the diagonal line (Pearson’s r =0.92). The accuracy of individual
classifier varies from 17% to 75%, and as to be expected, the performance of the ensemble
classifier is the best in both platforms. The overall accuracy of the optimal classification
method is slightly better in microarray compared to RNA-seq (75% vs 67%). On the
other hand, we observe a lower prediction accuracy for the class “PPARA” in RNA-
seq (55.56%), compared to the microarray (88.87%) platform (not shown in the figure).
Results of the second analysis summarized on the right hand plot shows even greater
agreement between the prediction accuracies of the classifiers trained on a bigger training
set in one platform and used to predict using the bigger test data on the other platform
(Pearson’s r =0.99). Remarkably, the ensemble classifier was able to provide 100%
accurate predictions for both cases, regardless of the additional complexity caused by 8
varieties of classes. In this analysis, the component classifier PLS+LDA also performed
similarly to the ensemble classifier in both cases yielding 100% accurate class predictions.
Clearly, between the two types of dimension reduction methods, PLS performs better
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Figure 1: Plots between predication accuracies of RNAseq vs microarray test sets, by
eight different classification techniques, for classifiers trained and predicted on individual
platforms and cross platforms.

than PCA throughout this study. The performances of classifiers integrated with PCA
are clearly the weakest among all individual classifiers in each scenario.

From the third analysis, we observed that five of ten most important genes for clas-
sification (Cyp1a1, Fam111a, Ugt2b, Akr1b8, and Hbb) were common between the two
platforms. From literature search we found that CYP1A1 encodes a member of the cy-
tochrome P450 superfamily of enzymes which catalyze many reactions involved in drug
metabolism. Likewise, Ugt2b belongs to a large family of proteins capable of detoxifying
a wide variety of both endogenous and exogenous substrates such as biogenic amines,
steroids, bile acids, phenolic compounds and various other pharmacologically relevant
compounds, including numerous carcinogens, toxic environmental pollutants and pre-
scription drugs. Mutations in Hbb have been implicated in a number of blood disorders.

5. Discussion

In this study, we developed an ensemble classifier built on a set of standard classifiers to
predict MOAs in Rat liver experiment data profiled by microarray and RNA-seq. The
newly constructed ensemble classifier performed reasonably well in both platforms sep-
arately; we observed comparable overall predictability of MOAs in both test sets with
75% and 67% accuracies for microarray and RNA-seq, respectively. In an earlier classifi-
cation approach applied on the same data, Wang et al. (2014) reported averaged overall
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accuracies of 58% and 61% for microarray and RNA-seq, suggesting a slightly better
predictability in RNA-seq. However outcomes of these two studies are somewhat incom-
parable due to the differences in test data sets used. For example, we omit two unknown
classes present in original test sets after including controls as a separate class, whereas
in their analysis, two unknowns were considered as another class while discarding con-
trols. Interestingly, once we trained classifiers to make predictions on cross platforms,
the ensemble classifier provided 100% accurate predictions for all 8 classes presented
in the whole experiment. This result exhibits a perfect cross platform concordance
in view of classification. Clearly, throughout the whole analysis, none of the individ-
ual classifiers outperformed the ensemble classifier with respect to the overall accuracy.
However, PLS+LDA performs equally well in many cases. We observe widely different
classification performances among standard classifiers, which reflects the unreliability of
restricting to a single classifier in case of high dimensional classification problems. On
the other hand, this also proves the utility of the adaptive ensemble classifier which is
expected to perform as good or better than the individual classifiers.
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