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ABSTRACT
Predicting disease phenotypes from genotypes is a key challenge in medical ap-

plications in the postgenomic era. Large training datasets of patients that have
been both genotyped and phenotyped are the key requisite when aiming for high
prediction accuracy. With current genotyping projects producing genetic data for
hundreds of thousands of patients, large-scale phenotyping has become the bottle-
neck in disease phenotype prediction.

Here we present an approach for imputing missing disease phenotypes given the
genotype of a patient. Our approach is based on co-training, which predicts the
phenotype of unlabeled patients based on a second class of information, e.g. clinical
health record information. Augmenting training datasets by this type of in silico
phenotyping can lead to significant improvements in prediction accuracy. We demon-
strate this on a dataset of patients with two diagnostic types of migraine, termed
migraine with aura and migraine without aura, from the International Headache
Genetics Consortium.

Imputing missing disease phenotypes for patients via co-training leads to larger
training datasets and improved prediction accuracy in phenotype prediction.

Motivation Co-training (Blum and Mitchell, 1998) is an instance of semi-supervised
learning, which is often employed in scenarios where the number of labeled exam-
ples (L) is low and the number of unlabeled instances (U) is large. The reason for
this imbalance is simply due to the high cost of labeling the data. The co-training
method benefits from a natural split of the feature space. An instance x is described
by the set X of all features, comprised of two mutually exclusive “views” X1 and X2.
A labeled object x is referenced as ((x1, x2), y) where x1 and x2 are the values for
the features in X1 and X2, and y is the class label. The algorithm then learns two
classifiers h1 and h2, one for each view of L, followed by an iterative bootstrapping
in which instances of U are labeled and the most confident ones are moved to L.

In this study, and following the spirit of co-training, the two exclusive views of
the data are the clinical covariates and the genotype data of patients with one of two
different types of migraine: a) migraine with aura and b) migraine without aura.



Results Our analysis was conducted by partitioning the entire dataset into three
groups: Set I, the training dataset : contains a subset of the patients for which all
available information is present, i.e.: a disease phenotype, a set of clinical covariates
and genotype data in the form of single-nucleotide polymorphisms (SNPs); Set II,
the co-training dataset : similar to the training set but with a much larger number
of patients. Here the patients lack a disease phenotype (unlabeled); Set III, the
evaluation dataset : is used to evaluate the method. It does not contain clinical
covariates. This is depicted in Fig. 1.a

Figure 1: Data partioning and the proposed two-stage approach to co-training

The algorithm was then applied in two sequential steps (Fig. 1.b-c): Step 1:
predict a disease phenotype for the patients in set II by learning a classifier hc from
the clinical covariates of the patients in set I; Step 2: the previous predictions are
used to augment the pool of labeled examples. Then, a genotype classifier hg is
constructed via co-training. Finally, hg is tested on III to obtain an AUC score.

Four metrics were used to compare the prediction performance of the algorithm.
These metrics corresponded to different cases that ranged from using the least pos-
sible amount of data for training (to compute a lower bound) to using all available
data (upper bound). Between these two ranges, the actual prediction performance
was reported and all these values are shown in Table 1.

Table 1: Bounds and prediction performance of in silico phenotyping. Partition of the
data into: set I = 10%, set II = 70% and set III = 20%; 100 random folds.

AUC scores
Metric µ σ
Lower bound, training only on I 0.574 0.034
Univariate featire selection on I, training on I+II 0.608 0.035
In silico phenotyping (co-training) 0.646 0.029
Upper bound, I+II with true labels 0.689 0.025
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