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Introduction The MAQC1 and SEQC2, 3 projects have introduced a key resource for testing future 

developments of microarray and RNA-seq analysis tools, as required in clinical and regulatory settings. In 

this study, based on SEQC data set, we investigate the sensitivity, specificity and reproducibility of RNA-

Seq differential expression calls. Going beyond general results of the original SEQC studies2, 3 I will 

extend and complement the comparative analysis by considering differential expression tests that are 

closer to typical ‘real world’ experiments. In particular I will concentrate on comparisons of samples A 

and C, where C consists of 3 parts of sample A and 1 part of sample B.1, 2 This pair of samples has the 

smallest average effect strength ('signal') amongst the different possible pair-wise comparisons of the 

MAQC/SEQC ABCD samples. Exploring the effect of RNA-Seq pipeline choices, we now also consider 

all 55,674 known AceView genes,17 rather than the 23,437 genes of the originally published comparison 

with Affymetrix HGU133Plus2.0 microarrays. A key result of our study is thus as comprehensive 

benchmark of alternative methods for gene expression estimation and differential expression calling, 

representative of the wide range of tools now available and reflecting the rapid development of the field. 

The presented metrics assess sensitivity, specificity, and reproducibility for both genome wide analysis 

and the identification of top candidates for further follow-up. 

 

Results  Comparing the SEQC samples A and C we are expecting more genes with a stronger expression 

in sample C because it contains, in addition to RNA from sample A, also RNA of genes expressed in 

sample B. Benchmark results compare a wide range of tools for expression estimation (EE), including r-

make4, Subread5, TopHat26/Cufflinks27, SHRiMP28/BitSeq,9 and kallisto10, in combination with a range 

of established tools for differential expression calls (DEC), including limma11, edgeR,12 and DESeq2.13 

Tools were selected to provide a good overview of the current state of the art in RNA-Seq data analysis. 

Depending on the methods for expression estimation and DE calling, the number of detected 

differentially express genes vary roughly between 7,000 – 10,000 (Fig. 1). Sensitivity in general depends 

less on the method for differential expression calling, while more variation is observed for the different 

approaches in estimation of expression levels. Remarkably, there nevertheless is only limited agreement 

of the lists of genes identified by different methods for differential expression calls, with a typical 

pairwise agreement of 56–67%. To investigate these discrepancies we examined M(A) plots, where genes 

are represented by dots coloured according to which methods identified them as differentially expressed 

(Fig. 2). In the left panel (for AvsC) we can identify areas where different DEC methods are particularly 

sensitive. Variation in the sensitivity of DEC methods for different effect strengths (M) and gene 

abundances (A) reflects the range of approaches to data normalization and statistics used for DE calling. 

Among the examined DEC methods, DESeq2 appears to be the most conservative in calling DE genes of 

low abundance (low average expression). This may be appropriate considering the relatively high 

variance of low count data that is characteristic of weakly expressed genes in RNA-Seq.14 Also weakly 

expressed genes might be relatively more affected by site-specific variation arising during library 

preparation3, as seen in the right panel of the Fig. 2, which shows a same–same sample comparison – 

genes identified there as ‘differentially expressed’ are false positives (FPs) in a search for biologically 

relevant differences. 

The SEQC study design1 – 3 provides us the unique possibility to further examine the site-specific 

effects. In particular, we can calculate an eFDR (empirical False Discovery Rate) by comparing the cross-

site sensitivities for AvsC, CvsC and AvsA (Fig. 3, and Fig. 4 left panel). The number of false positives 

(FPs) can be reduced when appropriate methods15, 16 are applied to remove the unwanted variation by 

analysing the experiment in context of similar experiments obtained from the public repositories. In our 

study we can use different sequencing site to mimic such ‘context’. We have applied the PEER tool16, 

which has performed the best in the SEQC study3, to remove the unwanted variation. The eFDR has been 



reduced noticeably from typical eFDR reaching up to 50% to not crossing in general the 20% (Fig. 4 left 

vs middle panel). As the eFDR is strongly dependent on the combination of EE method and DEC method, 

even after PEER some sequencing site pairs obtain more than 60% eFDR (outlier sites for kallisto). As 

the eFDR level is still not satisfactory the further filtering is needed as was shown in MAQC1 and SEQC2, 

3 studies. In terms of RNA-Seq, unlike for microarrays, in addition to filter for small changes also the 

filter for small expression levels is required (see Methods for threshold details; reasoning, approach and 

consequences will be extended in the full version of the manuscript). This is the direct consequence of the 

sampling nature of NGS14. Application of the dedicated filters which fix the EE+DEC pipelines 

sensitivity for intra-site AvsC comparison to about 3000 differentially expressed genes reduced the eFDR 

for a typical site pair below 2.5% for almost all cases. Just for SHRiMP2/BitSeq and kallisto used 

together with edgeR the typical eFDR is higher but still below 5 %. Adding filtration by removing the FPs 

not only lower the eFDR but also increase the agreement between DEC methods as now the method 

specific FPs has been removed. The agreement has increased from 60-67% (after PEER correction) to the 

level of 86-94% depending on site, EE and DEC method. 

In medical and life sciences the goal is to produce the accurate gene signatures – lists of 

differentially expressed genes which can be reproduced in the other laboratory. This challenge can be seen 

in different ways depending on the study design and the next steps which will be taken with the provided 

gene signatures. In terms of the whole genome studies the interest is in the accuracy of the list of all 

differentially expressed genes. Based on our study we can conclude that agreement between sequencing 

sites depends strongly on the selected DEC method when no addition filtering is used: typically 50-68% 

for limma, 66-72% for edgeR and 72-78% for DESeq2. Application of the additional filtering, although 

reduce the sensitivity, increase the agreement and makes that all DEC method have more similar ranges: 

typically 77-80% for limma, 81-83% for edgeR and 82-84% for DESeq. There are studies, however, 

where the full list of differentially express genes is not of interest. More important is list of ‘top’ 

candidates which can be further tested in follow-up studies. As here not the sensitivity but rather 

specificity is of the main concern, the filtering is more than welcome. In Figure 5 the summarized 

agreement (on y-axis in %) between topN (where N is on x-axis) differentially expressed genes (sorted by 

the effect strength) is shown. The different panels represent different DEC methods while different 

colours in violin plots represents different expression estimation methods (as specified in the legend). For 

the short top lists the agreement is strongly dependent on combination of EE and DEC methods. These 

differences are getting smaller when lists are getting longer with almost all combinations reaching 80% 

agreement for top200 and crossing 90% agreement for top1000. For a good performance for the short lists 

the solution might be to use of even stronger filters on average expression, but then the ‘true’ candidates 

with weaker average expression can be filtered out, what for many studies can be a big loss. That is why a 

better approach is to consider a different combination of EE and DEC method, eg. SHRiMP2/BitSeq + 

edgeR). 

 

Conclusions Going beyond the general comparison presented in SEQC study2, 3, we present here the 

benchmarking for scenarios which better represent the effect sizes of typical experiments. We have in 

details examined the sensitivity, specificity, and reproducibility of the RNA-Seq differential expression 

calls for a comparison of the SEQC samples A and C. We have shown that application of appropriate 

procedures and filters improves the reproducibility of both the genome wide analysis as well as the 

identification of top candidates. We also have shown that it is important to benchmark different analysis 

tools and pick the one which fits the best for our scenario. 

In particular, it is crucial to analyse results in the context of similar experiments, as such an 

approach allows to apply tools like PEER which can identify and remove hidden confounders, having a 

great influence on the eFDR without changing the overall landscape of sensitivity. We have shown, 

however, that further filtering of FPs is required to obtain acceptable level of eFDR. A cost of an 

improved specificity is the decreased sensitivity. The good news is, however, that both for the genome 

wide studies as well as for ones when the top candidates are identified the results have been improved. 

When we consider the full list of genes called as differentially expressed, both the agreement between 

sites for the same DEC method as well as the agreement between different DEC methods improves 



noticeably with filtering, making analysis results more robust and easier to reproduce across laboratories. 

The improvement from filtering can also be seen for the top ranked candidates with the strongest 

expression change. Here we can recommend in general the use of DESeq2 tool for DE calling especially 

in combination with BitSeq. This combination performed particularly well for the shorter lists of the most 

highly-ranked 50–200 differentially expressed genes. Different aspects of performance, however, vary 

across tool combinations. In general, pipelines relying on Tophat2/Cufflinks2 for estimation of expression 

levels performed the worst, while newer tools such as BitSeq (or kallisto) performed better. 

Future work for the full manuscript: For the conference presentation and the full proceedings 

manuscript, the analysis will be extended to explore DE calling by dedicated methods for BitSeq and 

Cufflinks, and examine BitSeq DE calling for kallisto bootstrapping results. 

 

Methods In this study the SEQC data set has been used (which is described in details and summarized 

elsewhere)2. Here the sequencing data of samples A and C of six Illumina HiSeq 2000 sites have been 

used. 

The expression profiles of AceView17 genes has been assessed by selected tools representing the 

state of the art approaches for expression profiling. The gene expression profiles were assessed in the 

form of read counts. R-make (based on STAR) and Subread perform the alignment to the genome what is 

followed by counting the reads which are falling into the gene regions. The TopHat2 with the G option 

represents the hybrid approach, where reads are first aligned to the virtual transcriptome and then mapped 

back to the genome. The gene and transcript expressions are then estimated with Cufflinks2 based on the 

genome based alignments. BitSeq uses directly the transcriptome alignments (here provided by 

SHRiMP2) to assess the transcripts abundances. These where then sum up per gene to obtain the read 

count estimates for genes. Kallisto represents the alignment free approach, where transcript abundances 

are assessed directly from reads based on graph pre-built with use of the transcript sequences. Also here 

the transcript expression estimates where sum up per gene to obtain the read count estimates for genes. 

Gene expression estimates for all samples were used to detect latent variables using PEER 

package16. The covariates associated with sample type were included for inference and the inferred 

hidden confounders were removed from the signal. 

Differential expression analysis has been performed with use of three dedicated R packages: 

limma, edgeR and DEseq2. In all three cases the suggested way of analysis has been performed (in terms 

of limma it includes TMM+voom pre-processing). The Benjamini-Hochberg adjustment for multiple 

testing has been performed. The genes were called differentially expressed when q-val <0.05.  When 

filtering has been applied in addition: gene effect strength has to be higher than 2 (abs(log2FC) > 1) and 

the Average Expression has to be higher than dedicated threshold. Average expression threshold was 

selected for each combination of expression estimation and DE calling method separately in order to fix 

the average intra-site AvsC sensitivity at level of 3000 genes. On average 45th percentile with SD of 2.3 

has been used (lowest for limma than DESeq2 and edgeR; lowest for Subread, then kallisto, TH2G, 

BitSeq and r-make). The same thresholds have been applied to inter-site DE calling. The DE analysis has 

been focused on down-regulated genes in A versus C comparison, as the strength of the up-regulated 

signal is limited by design of sample C as 3 parts of A and one part of B. 

Overall agreement between lists of differentially expressed genes has been calculated as ratio of 

lists intersection and lists union. Agreement of topN candidates has been calculated as ratio of intersection 

of compared topN lists and the N, where differentially expressed candidates have been order by the 

change strength. 
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Figure 1. Intra-site differential expression call sensitivity. 

For each expression estimate method (x-axis) and each DE 

calling method (colour) all intra-site A versus C 

comparisons are presented in a form of the violin plot. Y-

axis represents the sensitivity as a number of differentially 

expressed genes (with q.val<0.05). 

 

 

 

 

 

 

 

 
Figure 2. Left panel represents the overlap of the DE calling by different DEC methods for AvsC intra-site comparison, while 

right panel shows the results for the inter-site AvsA comparison. The overlap between calling as DE by different DEC methods 

is encoded by different colours. Grey clouds represent not down-regulated genes. 

 

 
Figure 3. Inter-site differential expression call sensitivity, including false-positives from same–same comparisons. For each 

expression estimate method (x-axis) and each DE calling method (panel) all inter-site A versus C comparisons (cyan) as well as 

A versus A (magenta)  and C versus C (yellow) are presented in a form of violin plots. The same–same comparisons show the 

sensitivity of methods to picking up false positives. 



 
Figure 4. eFDR. For each expression estimate method (x-axis) and each DE calling method (colour) eFDR has been estimated 

as ratio between inter-site A versus A  plus C versus C and A versus C. The left panel represents results based on not corrected 

counts with DE calling by q-val threshold. In the middle panel hidden confounders have been removed by PEER from count 

expression estimates. In the right panel additional DE calling filters has been applied (as described in methods). 

 

 
Figure 5. Inter-site reproducibility of 

differential expression calls. Comparing the 

identities and the directions of change for 

DEGs across sites, agreement is plotted for 

lists including the top-ranked genes as sorted 

by effect size (x-axis). The observed 

response violin plots depend on expression 

estimate pipeline, DE calling pipeline and 

filter choice, showing more variation and 

lower agreement levels for shorter lists. 

Results for BitSeq and DESeq2 seems to be 

the most robust. Agreement for top1000 

genes cross 90% irrespectively from the 

pipeline choices. 

Presented results were obtained based on 

expression estimates after removing the 

hidden confounders by PEER. For DE 

calling additional filters for average 

expression and effect strength have been 

applied. 


