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Abstract 

Most biological phenotypes are too complex to be described as consequences of the 

activities of individual genes but rather as a complex interaction among these. Here we 

propose the transformation of individual gene expression data into numerical descriptors 

of signalling pathway activities and its use to predict the mode of action (MOA) of 

chemicals. Here we addressed the Challenge 1a: SEQC Rat TGx - rat liver response to 

chemicals data, Topics 1 and 2. Our results show how the performance of the 

transformed values is quite good and how the predictions derived from RNA-seq seem 

to be better that the ones derived from microarrays.  

  

Introduction 

Many complex traits, as drug response, are associated with complex changes in 

biological pathways rather than being the direct consequence of single gene alterations. 

Actually, the idea of using the information contained in different biological pathways to 

understand complex traits, such as disease or drug mode of action is gaining 

acceptance [1]. Signaling pathways provide a formal representation of the processes by 

which the cell triggers actions in response to particular stimulus through a network of 

intermediate gene products. In particular, specific sub-networks (or circuits) that connect 

stimulus reception proteins to proteins that produce the consequent cell response can 

directly be related to cell functionalities. Recently some methods have developed that 

focus particularly on the estimation of the activity of these stimulus-response signaling 

circuits from gene expression data [2, 3].  

 

Method: 

We obtained Rattus norvegicus (rat) signalling pathway information from KEGG 

database. A total of 23 signalling pathways were examined. Each pathway was split up 

into their elementary signalling circuits, as described previously [3]. Activation-

inactivation relationships between nodes (proteins) along the circuits enabled us to use 



a graph traversal methodology for updating signal intensity at each visited node and 

finally compute a global value of signal transduction for the circuit, that we call signalling 

circuit activity therein. Unlike in previous methods [2, 3], the algorithm used here for the 

calculation of these signalling circuit activities is platform independent and can use gene 

expression data either from microarrays or from RNA-seq. 

The microarray and RNAseq datasets (GSE55347,GSE47792) were downloaded from 

the GEO database. The raw microarray data were normalized by RMA method. The 

probe IDs were converted into Entrez Gene IDs. The probe expression values were 

summarized into gene expression values by 90 quantile. 

The RNAseq data were already normalized, as provided by the MAGIC pipeline and we 

used them directly, and annotated with Entrez gene IDs (duplicated gene IDs were 

excluded). 

In total, 1334 genes were used to calculate signalling circuit activities for the 867 sub-

pathways that compose the 23 signalling pathways studied here. These signalling circuit 

activities and normalized gene expression values were used to compare their respective 

prediction accuracies. 

ANOVA was used to detect the differential expressed genes and signalling circuits.  All 

training and test set groups were used together for ANOVA.  

For the prediction, support vector machine (SVM) with radial basis function (RBF) kernel 

was used [4].  Two parameters for an RBF kernel were used: cost and sigma. Best 

sigma and cost parameters were selected among different values tested. The model 

optimized with 10 fold cross validation.  

(MOAs were used as endpoints for training the model as follows:  

Training Set: 

 “PPARA”, “CAR/PXR”, “CONTROL”, “UNKNOWN”(AhR, Cytotoxoc, DNA Damage) 

Test Set: 

 “PPARA”,  “CAR/PXR”, “CONTROL”,“UNKNOWN”(ER, HMGCOA) 

 

Results and discussion 

For both platforms the prediction accuracy obtained using signalling circuit activities as 

classification variables was reasonable and better than the corresponding accuracy 

obtained when using genes alone (see Figure 1).  

It must be taken into account that not all the chemicals studied are acting at the level of 

the signalling pathways and therefore some MOAs will probably be deficiently predicted 

using only information on signalling. For example, HMGCOA (all) and AHR 

(LEFLUNOMIDE) MOAs are known to act at the level of metabolic pathways. 

 

 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55347
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47792
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Figure 1. Prediction accuracy obtained using signalling circuit activities or gene expression 

values as classification variables obtained for RNA-seq and microarray data.  

 

An example in which the different effect of chemicals over pathways is obvious is 

depicted in Figure 2. It presents the analysis results of the PPARA signalling pathway 



among the two MOA groups. Common MOAs groups of the test and training sets were 

merged for this analysis. 

In the PPARA group (the group which exposed to PPARA agonists) the PPAS signalling 

pathway present a clear alteration in the lipid metabolism, while the AHR (and actually 

the other MOA groups, data not shown) have the pathway unaltered. These analyses 

were carried out for both, RNAseq and microarray data, rendering highly correlated 

results. 
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Figure 2. Differential activities in the PPAR signalling pathway in presence of chemicals 

belonging to the PPAR (left) and AHR (right) groups.  

 

Conclusions 

The method presented here shows that transforming the gene expression data into 

mechanism-based biomarkers within the context of signalling pathways is useful to 

predict molecular phenotypes that are controlled by signalling pathways. In addition, we 

were able to distinguish different phenotypes using signalling circuit activities.  

We propose that approaches that model cell functionalities will be not only more 

accurate in predicting phenotypic traits, such as the drug response, but will also provide 

insights into the molecular mechanisms that account for such phenotype.  
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