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1 Introduction
The TGP dataset from the Japanese Toxicogenomics Project concerns the response of rats and rat
and human in vitro cell cultures to a number of drugs [1]. In the CAMDA 2013 challenge this
dataset is utilized for analyzing drug-induced liver injury (DILI). Questions include the evaluation
of the dataset to determine whether the animal model can be replaced with an in vitro cell culture,
and whether DILI can be predicted using toxicogenomics data from animals. Both pathology data
and microarray genomic expression data are provided in the challenge. We approach these ques-
tions as a machine learning task, evaluating the dataset in the context of SVM and RLS classifiers
and in defining an experimental setup for automated prediction of DILI.

2 Dataset and Methods
We use the FARMS normalized version of the CAMDA dataset, intended to overcome observed
cell culture effects [2]. The dataset consists of a large number of experiments, but in light of the
proposed experimental question, predicting the liver injury potential of a drug, there are only 101
distinct examples, each example representing a single drug with a human DILI-concern rating,
with features potentially combined from several in vivo or in vitro experiments. Of these drugs, 8
are in the “no DILI concern”, 52 in the “less DILI concern” and 41 in the “most DILI concern”
categories.

A per-drug example dataset in LibSVM format is provided as part of the CAMDA challenge,
for the task of classifying drugs into “no DILI concern” vs. “most DILI concern”. With only 8 ex-
amples in the “no DILI concern” class, if e.g. 10-fold cross validation were applied to the dataset,
each subset would contain on average just a single example of this class, leading to potentially
unstable results. We note that Pessiot et. al. [3] performed classification experiments using bi-
nary classification into “no or less DILI concern” vs. “most DILI concern”, an experimental setup
resulting in a more balanced class distribution.

In defining our experimental setup our primary aim was to formulate a question that would
result in a larger dataset, potentially producing more reliable results. Therefore, we defined as our
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per-individual experiment whether the individual animal or cell culture in a single experiment had
been treated with a drug of “no or less DILI concern” or “most DILI concern”. This setup is of
course very close to classification on the level of drugs, but allows us to explore the classifica-
tion potential of the individual variation between experiments, and provides us with a larger set of
examples. To maximize available data we also combined single and repeated dose rat in vivo ex-
periments. In preliminary classification studies, we observed that models trained on high drug dose
experiments had best performance, and that 9 hr, 24 hr and 29 day time points for the rat in vivo
data, as well as 8 hr for the human and 2 hr for the rat in vitro data had best performance. Selecting
these experiments for further study, we produced datasets with “most”/”no or less” examples at
80/160 for human in vitro, 82/120 for rat in vitro and 205/215 for rat in vivo experiments.

There are of course strong implied dependencies between individual experiments with a single
drug, between not only replicates, but potentially also time points and doses. To avoid information
leaks, when selecting examples for training and testing, we always put all examples treated with
the same drug into either the training or the testing set.

2.1 Features
We defined a number of feature groups to be used for classifying the data. Pathology features are
the pathology, hematology, biochemistry and liver weight data, available for the in vivo rat ex-
periments. Array features are the FARMS-processed, non-collapsed microarray expression values
available for all experiment types. We also experimented with using INI scaling, multiplying the
expression values with their reliability estimates (value∗ (1− INI)) [4].

In addition to these basic features, we also explore refining the dataset with additional data on
tissue specificity of gene expression. We retrieve from UniGene1 known tissues of expression for
both rat and human genes. For each tissue-specific group of expression values we define a set of
statistical features (minimum, maximum, mean, median and variance) intended to give an overview
of expression values. Alternatively, we also select as array features and the tissue-specific statistics
only the subset of genes known to be expressed in the liver, based on UniGene data.

2.2 Machine learning approach
We apply two state-of-the-art machine learning algorithms: the support vector machine (SVM) and
the regularized least-squares (RLS) method, also popularly known as least-squares SVM, or ridge
regression [5]. The methods are closely related, and have in numerous experimental comparisons
been shown to have quite similar performance. A specific advantage for RLS is the existence of
efficient computational short cuts for computing cross-validation estimates. These are especially
useful in the considered setting, since due to the small sample size, a central challenge for the
evaluation is how to do parameter selection, and at the same time obtain a reliable estimate of the
predictive performance. For RLS learning and cross-validation algorithms, we use the implemen-
tations in the RLScore2 software package.

For the initial SVM experiments we applied the SVMmulticlass support vector machine3 [6]

1http://www.ncbi.nlm.nih.gov/unigene
2http://www.tucs.fi/RLScore/
3http://svmlight.joachims.org/svm_multiclass.html
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with a linear kernel. Experiments with 10-fold cross-validation proved very unstable, likely due to
the small number of examples in each subset, so we adopted a 5-fold cross-validation approach,
where two fifths were used to train the classifier, two fifth’s to optimize the parameters (opt set) and
one fifth to evaluate performance (test set). All examples for the same drug were always placed in
the same fold.

To maximize the use of the available data we took advantage of the cross-validation capabilities
of the RLScore package. Following the recommendations of [7] we apply a leave-pair-out cross-
validation scheme, defined as follows:

1
|I+||I−| ∑i∈I+

∑
j∈I−

H( f{i, j}(xi)− f{i, j}(x j)),

where f{i, j} denotes a classifier trained with the whole data set except the i-th and j-th training
examples, and I+ ⊂ I and I− ⊂ I denote the indices of the positive and negative instances in the
whole data set Z, respectively. We enumerate all the drug-pair combinations, and on each round
of cross-validation leave as test examples all data points corresponding to these two drug pairs.
The setup guarantees that we have no information leak between training and test data, since all
data points corresponding to same drug are always in the same fold. Further, as shown by [7],
the method makes maximal use of the available data, producing an almost unbiased estimate of
the AUC, with lower variance than alternative approaches. We perform nested cross-validation,
with an inner leave-pair-out loop used for parameter selection, and an outer one for performance
estimation.

3 Results and Discussion
In Table 1 we present RLS leave-pair-out classification results for the preprocessed per-drug TGP
data prepared by the CAMDA organizers. We notice considerable variance in the results: while
the best performance achieved on high-dose level at 24 h is 0.71, the lowest one is 0.23 AUC at 2 h
on low dosage, which is much worse than a random classifier would be expected to perform (0.5).
Therefore we consider it unclear how much predictive power the learned models really have, or if
the detected patterns are just due to random chance.

In Table 2 are shown the results for our per-individual approach to the CAMDA dataset, test-
ing both SVM and RLS classifiers. We again notice considerable variance on the results. While
the RLS cross-validation presents the most efficient way of utilizing the available data for train-
ing, the 5-fold SVM cross-validation should result in relatively similar results for truly reliable
predictions. We notice the two experiments provide similar results mostly on the rat in vivo data,
where performance is also the highest. The rat and human in vitro datasets show considerably
lower performance, with human results slightly more promising. In our experimental setup, the
use of INI values did not have much impact on performance. The direct use of the pathology data
as features resulted in very unstable models for the in vivo data. We note that the UniGene tissue
specific expression statistics show some potential on the in vitro datasets, achieving on occasion
relatively high performance with a much smaller number of features, but due to the variance of the
dataset, these observations should be considered highly speculative. Overall, the use of the in vivo
expression data as features resulted in the most stable models.
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Table 1: RLS nested leave-pair-out cross-validation results on preprocessed TGP per-drug data.

Dose AUC (2 h) AUC (8 h) AUC (24 h) AUC (all timepoints)
All 0.60
Low 0.23 0.48 0.57
Middle 0.61 0.61 0.63
High 0.46 0.49 0.71

Table 2: RLS nested leave-pair-out cross-validation and SVM 5-fold cross-validation results (parameter op-
timization set and test set) on per-individual TGP data. Results over AUC 0.6 are shown in bold and under
AUC 0.5 in italics.

Species Feature Groups Features SVM(opt) SVM(test) RLS
human in vitro INI, array 9011 0.59 ± 0.06 0.53 ± 0.07 0.54
human in vitro INI, array, unigene 9479 0.60 ± 0.07 0.50 ± 0.09 0.40
human in vitro INI, array, unigene(liver) 8049 0.60 ± 0.06 0.52 ± 0.09 0.53
human in vitro INI, unigene 471 0.55 ± 0.06 0.53 ± 0.07 0.57
human in vitro array 18980 0.60 ± 0.07 0.49 ± 0.07 0.54
human in vitro array, unigene 19448 0.60 ± 0.06 0.48 ± 0.08 0.40
human in vitro array, unigene(liver) 12093 0.60 ± 0.06 0.49 ± 0.07 0.53
human in vitro unigene 471 0.54 ± 0.05 0.52 ± 0.05 0.65
human in vitro unigene(liver) 15 0.53 ± 0.05 0.49 ± 0.01 0.53
rat in vitro INI, array 7950 0.54 ± 0.03 0.53 ± 0.06 0.55
rat in vitro INI, array, unigene 8130 0.54 ± 0.03 0.52 ± 0.05 0.53
rat in vitro INI, array, unigene(liver) 4752 0.56 ± 0.03 0.51 ± 0.06 0.51
rat in vitro INI, unigene 183 0.55 ± 0.02 0.53 ± 0.06 0.56
rat in vitro array 12080 0.54 ± 0.03 0.53 ± 0.04 0.55
rat in vitro array, unigene 12260 0.54 ± 0.03 0.54 ± 0.06 0.51
rat in vitro array, unigene(liver) 5533 0.56 ± 0.03 0.52 ± 0.06 0.51
rat in vitro unigene 183 0.55 ± 0.02 0.54 ± 0.05 0.58
rat in vitro unigene(liver) 9 0.50 ± 0.00 0.50 ± 0.00 0.36
rat in vivo INI, array 6753 0.60 ± 0.06 0.58 ± 0.04 0.61
rat in vivo INI, array, unigene 6933 0.58 ± 0.03 0.58 ± 0.08 0.61
rat in vivo INI, array, unigene(liver) 4299 0.57 ± 0.03 0.55 ± 0.03 0.60
rat in vivo INI, unigene 187 0.59 ± 0.03 0.51 ± 0.05 0.55
rat in vivo array 12084 0.60 ± 0.06 0.61 ± 0.09 0.60
rat in vivo array, pathology 12189 0.62 ± 0.11 0.37 ± 0.11 0.49
rat in vivo array, unigene 12264 0.59 ± 0.04 0.59 ± 0.06 0.61
rat in vivo array, unigene(liver) 5537 0.58 ± 0.03 0.56 ± 0.03 0.60
rat in vivo pathology 112 0.62 ± 0.10 0.42 ± 0.04 0.41
rat in vivo unigene 187 0.59 ± 0.03 0.50 ± 0.03 0.55
rat in vivo unigene(liver) 13 0.52 ± 0.01 0.48 ± 0.02 0.50
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4 Conclusions
We find it notable that mostly the largest drug doses produced data that could be classified the best,
possibly indicating that the DILI-related gene expression response is rather faint, pointing to the
need for an experimental setup strong enough to produce unambiguous data.

Our Python-based experimental software is built on publicly available tools, depending only
on open source classifiers. We will also provide all of our code under an open source license,
hopefully useful for further research on the topic.

In testing various feature representations, we observed potential value on refining the expres-
sion data with external databases such as UniGene. However, most importantly, performing a
large set of experiments with somewhat related feature representations and different classifiers
highlighted the disturbingly large variance in classification performance. In understanding the po-
tential of the TGP dataset for building predictive models we therefore consider it highly important
that all experimental results are carefully compared and evaluated.
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